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Abstract—In this article, we propose a novel method
for detecting environmental changes in the reinforcement
learning. The proposed method utilizes recurrence plots of
state transitions of the system, and quantifies changes of
the recurrence plot by a texture analysis. It is shown that
the proposed method is effective to detect environmental
changes.

1. Introduction

Reinforcement learning is a learning theory that an agent
learns the optimal action in a state through trials-and-errors
for an unknown environment [1]. When the agent does not
have knowledge about the environment, the agent can learn
the optimal actions by being presented only rewords for the
actions. For such an advantage, the reinforcement learning
is used in wide fields such as game problems, robot control,
and dynamic allocation problems [1].

Reinforcement learning is known that it can apply to a
dynamic environment for that the agent learns by trials-
and-errors. When the agent learns a dynamic environment,
it is already reported that the method of adjusting specific
parameters in the reinforcement learning is effective. The
method for adjusting the parameters, such as the learning
rate, the discount rate and the strength of randomness of
an agent, is known as the meta-learning in the reinforce-
ment learning [2]. By using the meta-learning, the agent
can adjust quickly in the static or dynamic environment.
One of the purposes of the meta-learning is an acceleration
of a learning speed. Several methods of an acceleration
the learning speed such as profit sharing or eligibility trace
exist besides the meta-learning. However, those methods
are considering past events, and it differs from the meta-
learning. Some other methods of adjusting parameters are
also reported. Those parameters are controlled by a certain
total reward for a duration [3], by an estimated reliability
using accumulated TD error [4] or by statistical method
using probabilistic model [5]. Those proposed methods,
that use total reward accumulated TD error or a state tran-
sition probability, are kinds of detecting methods by eval-
uating how much an agent’s learning progressed enough
or how much agent’s state transition converged. It is im-
portant that the measure of an agent’s learning progressed
enough or not for the meta-learning. We consider that ob-

taining a measure for an environmental change is one of
the important stage to the meta-learning. For the method of
the detection of environmental changes, Tanaka et al. have
reported on the method of the detection of environmental
changes using a sequential Monte Carlo [6].

In the present paper, we propose a new method using
recurrence plots as a method for detecting the environmen-
tal changes. The recurrence plot is effective to distinguish
steady between dynamic time series data [7]. In this pa-
per, we use the recurrence plots as a tool that distinguishes
the regularity of the state transition. Furthermore, we show
that a quantitative analysis of the recurrence plots by the
texture analysis is also effective for the detection of the en-
vironmental changes.

In the following, section 2 describes about the Q-
learning which is used for constructing controller through
out the present paper. In section 3, we propose a detect-
ing method for environmental changes by using recurrence
plots. Section 4 shows a schematic of pole balancing prob-
lem that is to be learned by the Q-learning. Next, in sec-
tion 5 we describe results of the detection of environmental
changes. As the final, we give conclusions in section 6.

2. Q-learning

In this paper, we use a simple Q-learning [9] to learn
controlling a pole balancing system. The purpose of the
Q-learning is to obtain the optimal action-value-function
Q∗(s, a), at a state s for an action a. At discrete time t, Q
value is updated by Eqs. (1) and (2).

Q(st, at) ← Q(st, at) + αδt, (1)

δt = rt+1 + γmax
a

Q(st+1, a) − Q(st, at), (2)

where α, γ, and δt denote the learning rate, the discount
rate, and the TD error, respectively.

In this paper, the agent uses the ε-greedy policy. In the
ε-greedy policy, the agent’s action is a random action at
the probability of ε, otherwise, it is the best action at the
current state that is determined by Q(s, a). In the following
numerical experiment, α, γ, and ε are fixed to 0.1, 0.99,
and 0.00001, respectively.

The purpose of the reinforcement learning is a return
maximization. The agent acquires the best actions that
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can lead to maximum summation of the rewards through
the learning. The reinforcement learning deals an imma-
ture Q(st, at) and an ε-greedy policy π as an approximate
value in the early stage of the learning. By iterating the
learning, Q(st, at) and π become the optimal value and the
optimal policy. When Q(st, at) is immature the difference
between the current Q(st, at) and the optimal Q∗(st, at) is
large, consequently, the agent selects a probabilistic action.
Conversely, when the agent learns enough, the agent selects
the best action. Therefore, it is useful to know whether the
agent’s action is always probabilistic or not in order to de-
tect the progress of the learning or to detect environmental
changes in the reinforcement learning.

3. Detection of environmental changes

3.1. Recurrence Plots

Recurrence plot is effective to distinguish steady be-
tween dynamic time series data [7]. Let a time series data
of length N is used to make the recurrence plot.

In general, each point in a time series is presented by a
vector v. A distance between two vectors of the i th and the
j th points v(i), v( j) in the time series is denoted by D(i, j)
and calculated by the following equation.

D(i, j) = ||v(i) − v( j)||, (3)

where || · || denotes Euclidean norm.
We make a recurrence plot using D(i, j). The recurrence

plot can be obtained by plotting a dot on (i, j) pixel, when
the distance D(i, j) is smaller than predetermined threshold
θD .

These examples demonstrate that one can distinguish be-
tween static and dynamic time series by the textures of the
recurrence plots.

3.2. Texture Analysis of a Recurrence plots

A texture analysis for quantifying recurrence plots has
been proposed [8] . In the analysis, the feature of a re-
currence plot is obtained by a co-occurrence matrix. The
co-occurrence matrix PC(r, θ, l1, l2) represents probabilities
that the luminance of a pixel and another pixel that apart
from each other for the interval (r, θ) are l1 and l2, respec-
tively. Where r is a distance and θ is an angle between the
pixels.

In the present paper, the recurrence plot is created as a
binary image. A feature of the image is obtained by the
following equation.

fr,θ =
1∑

l1,l2=0,|l1−l2 |=1

PC(r, θ, l1, l2), (4)

where fr,θ represents probability that the luminances of the
two pixels apart for (r, θ) are different in the recurrence plot.

Figure 1: Shematic diagram of a pole balancing problem.

4. System to be Learned for the Control

4.1. Pole Balancing Problem

In this paper, numerical experiments are executed on the
pole balancing problem [10]. The purpose of learning pole
balancing problem is that the agent becomes to select ap-
propriate forces to the cart so that the pole never fall down
for predetermined duration. Fig. 1 shows a schematic rep-
resentation of the pole balancing problem.

A task is composed of 900 episodes for a trial which is
composed of 600, 000 time steps that correspond to 200
minutes in real time. States of reinforcement learning
are decided by boxes system which is expressed by com-
bining quantized state variables [10]. In this paper, the
state variables x, ẋ, θ and θ̇ are quantized by the follow-
ing thresholds ; x : ±0.8,±2.4[m], ẋ : ±0.5,±∞[m/s],
θ : 0,±1,±6,±12[◦], θ̇ : ±50,±∞[◦/s], where x and ẋ de-
note the position and the velocity of the cart, respectively.
θ and θ̇ are the angle and the angular velocity of the pole,
respectively.

The goal of the control is to hold the pole within x =
±2.4[m] and θ = ±12[◦] during 600, 000 time steps. When
the agent succeeds to hold the pole, the agent is given r =
0 as a reward, otherwise the agent is given r = −1 as a
penalty. Q-learning is executed based on above rewards.
An action of the agent is selected from Ft = 0,±10,±20[N]
at time t. The angle of the pole on the cart is initialized at
6[◦].

The system’s dynamics is represented by the following
Eqs. (5) and (6).

θ̈t =
g sin θt + cos θt

[
−Ft−mlθ̇2t sin θt+µcsgn(ẋt)

mc+m

]
− µp θ̇t

ml

l
[

4
3 − m cos2 θt

mc+m

] ,

(5)

ẍt =
Ft + ml[θ̇t

2
sin θt − θ̈t cos θt] − µcsgn(ẋt)

mc + m
, (6)

where Ft denote an applied force to the cart’s center of
mass at time t. g, mc, µc and µp denote the gravity, the mass
of the cart and the coefficients of the friction of the cart on
the track and the pole on the cart, respectively. The values
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(a) 510 episode.
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(b) 511 episode.
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(c) 512 episode.
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(d) 513 episode.

Figure 2: Recurrence plots during the early stage of the environment 2 which means early steps of 100–220 in the environment 2.

 0

 20

 40

 60

 80

 100

 120

 0  20  40  60  80 100 120

j

i
(a) 690 episode.
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(b) 691 episode.
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(c) 692 episode.
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(d) 693 episode.

Figure 3: Recurrence plots during the late stage of the environment 2 which means early steps of 100–220 in the environment 2.

are fixed to g = 9.8[m/s2], mc = 1.0[kg], µc = 0.0005 and
µp = 0.000002 in the following experiments.

4.2. Environmental Changes of the Pole Balancing
Problem

In this paper, we assume that environmental changes
mean changing the mass m and or length l of the pole at
a given episode. One trial is composed of 900 episodes
and three kinds of the environment exist in the trial. These
environments are defined as followings.

• m = 0.2[kg], l = 0.4[m], during episode 1–500.
• m = 0.4[kg], l = 0.2[m], during episode 501–700.
• m = 0.2[kg], l = 0.5[m], during episode 701–900.

These are called environment 1, environment 2 and envi-
ronment 3, respectively in the following section.

5. A Detection of Environmental Changes

5.1. A Detection Method of Environmental Changes
using Recurrence Plots

Figures 2 and 3 show recurrence plots in the environ-
ment 2. Each recurrence plot is created by the change of
a vector of the state variables v= (x, ẋ, θ, θ̇), for early steps
of 100–220 in each episode ( N = 120 ). Each element
of the state vector v using recurrence plots are normalized.

The threshold θD used for the recurrence plots is fixed to
0.3. Figures 2(a)–(d) show the recurrence plots during the
early stage of the environment 2. Figures 3(a)–(d) show
the recurrence plots during the last stage of the environ-
ment 2. During the early stage of the learning for the new
environment, the state transitions of the system responding
to the action determined by the agent are dynamic because
Q(st, at) of an agent is immature. Therefore, recurrence
plots are changing for every episode. On the contrarily,
when the agent learns enough the state transitions are static
because Q(st, at) of an agent is mature. Consequently, re-
currence plots are not changing in successive episodes.

5.2. Result of Texture Analysis of Recurrence Plots

We quantify recurrence plots using texture analysis, and
obtain a feature vector f̄ for each episode. In the following,
the parameters in Eq. (4), θa are fixed to 0◦, 45◦ and 135◦.
The feature vector f̄ consists of [ f̄r1,0, f̄r1,45, f̄r1,135, f̄r2,0,
f̄r2,45, f̄r2,135, f̄r3,0, f̄r3,45, f̄r3,135 ], where f̄ri,θ is calculated
by the following equation.

f̄ri,θ =
1
20

ri+20∑
i=ri

fi,θ, (7)

where r1, r2 and r3 denote 1, 21 and 41, respectively. We
intend to calculate f̄ for short, middle and long ranges. One
can evaluate how much dose f̄ change for each episode by
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Figure 4: ∆ f̄ for each episode. A and B denote the early
and the late stage of the environment 2. C and D denote the
early and the late stage of the environment 3.

the following equation.

∆ f̄ (t) = || f̄ (t) − f̄ (t − 1)||, (8)

where || · || denotes Euclidean norm.
Figure. 4 show ∆ f̄ (t) for each episode. In the Fig. 4,

A and B denote the early and the late stage of the environ-
ment 2. C and D denote the early and the late stage of the
environment 3. During A or C, ∆ f̄ (t) become larger than
zero. On the other hand, during B or D, ∆ f̄ (t) becomes
zero. As shown above, a change of an environmental can
be detected as a quantitative expression by the texture anal-
ysis of the recurrence plots.

However, the above detection of environmental change
is effective not for every case. The goal of the control of
the pole balancing system is to maintain the pole staying
in the vicinity of an unstable fixed point. Therefore, this
problem is sensitive to the input. When an agent uses a
policy with the ε-greedy, the agent randomly selects actions
with probability ε. Consequently, the failure of the control
often happens even in after learning for long duration. The
agent detects an environmental change by mistake in such
a case. The agent also mistakes for the detection, when the
agent explores even though the agent’s learning is enough.

6. Conclusion and Discussion

We proposed a new method of detecting the environmen-
tal changes in a reinforcement learning. This method can
detect environmental changes by using the recurrence plot
of the state variables that can be observed by an agent.
While an agent is in the early stage of the learning for
new environments, the state transitions of the controlled
system changes dynamically. In contrast, when an agent
is in the late stage of the learning, the state transitions of
the controlled system are steady. Even in the late stage of
the learning, the state transitions become dynamic when
the environmental changes. Therefore such environmental

changes can be detected by the recurrence plots. A fea-
ture is obtained by quantifying the recurrence plots using a
texture analysis. The change of the feature indicates envi-
ronmental changes.

In the proposed method, there is the following problem.
The agent can not distinguish between the immature learn-
ing and the environmental changes. Because the proposed
method is detecting by the state transitions in the system. In
the future, we need to consider the above problem. More-
over, developing a method to utilize the feature obtained
by the proposed method for the meta-learning is an impor-
tant future problem. Then we could consider more effective
meta-learning for the return maximization than the existing
ones.
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