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Abstract—In the present paper, we investigate influence
of randomly connecting external inputs on retrievals in as-
sociative chaotic neural networks. The aim of the inves-
tigation is to find out possible roles of adult neurogenesis
in memory neural networks. As a first step, we numeri-
cally analysed the influence of randomly connecting exter-
nal inputs on retrievals when the associative chaotic neural
network retrievals the stored patterns with chaotic dynam-
ics. As the result, the randomly connecting external inputs
make less frequent retrieval of the stored patterns than the
case without the inputs. However, the randomly connect-
ing external inputs cause the network to switch the retrieval
pattern more frequent than the case without the inputs.

1. Introduction

A chaotic neural network model was proposed[1][2] and
it has been applied to an associative memory[3]. The net-
work model consists of model neurons that exhibit deter-
ministic chaos by themselves, namely, without connections
to the other neurons in the network[1][2] their behaviour is
chaotic. The chaotic neuron model was intended to model
dynamical response to stimuli that is observed in squid gi-
ant axons and in the Hodgkin-Huxley equations[4] in sim-
ple difference equations. Not only for a single neuron, ex-
istence of chaos in natural neural network has been also
discussed by Freeman[5][6]. Freeman and his colleague
also proposed an artificial neural network model, which is
called KIII model, exhibiting chaotic dynamics[7].

In order to study memory system in the brain, Hip-
pocampus has been paid attention by many researchers. As
model of the memory network, associative network is the
most popular model neural network. The conventional as-
sociative network is composed of simple static neurons that
are mutually connected. A common feature of the associa-
tive network and CA3 region in Hippocampus is that both
of them can be seen as recurrent networks. Recently adult
neurogenesis has been found in Dentate Gyrus (DG)[8] that
has connection with CA3 in Hippocampus. A model study
based on the layered network for investigating the role of
the adult neurogenesis in DG is recently reported[9][10],
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however, the layered network is not suitable as a model of
CA3 since the layered network does not have any recurrent
structure. The results of the model studies are limited be-
cause they consider only static mapping between the input
to the output.

In this paper, we investigate influence of randomly con-
necting external inputs on retrievals in associative chaotic
neural networks. The associative chaotic neural network
has recurrent structure and it exhibits chaotic retrieval of
the stored patterns[3]. We compare the retrieval charac-
teristics between the associative chaotic neural network
and the network with randomly connecting external inputs.
Here, we intend to mimic the input from the neurons caused
by adult neurogenesis by the randomly connecting external
inputs. At the moment, we can not find any experimental
result on the distribution of the spatial connection of the
neurons caused by the adult neurogenesis. Therefore, we
assume that the new neurons connect randomly to the ex-
isting neurons. From the above comparison with such an
assumption we may find possible role of the adult neuroge-
nesis on the memory retrieval of the stored pattern before
and after the adult neurogenesis.

2. Associative Chaotic Neural Network

The associative chaotic neural network to be investi-
gated in the present paper consists of a chaotic neuron
model[1][2] that exhibits deterministic chaos by itself. The
synaptic weights of the associative chaotic neural net-
work are determined by the conventional auto—associative
matrix[12]-[13] of the stored pattern vectors.

The operation of the associative chaotic neural network
model is represented by the following equations:
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where x;(f) denotes output of the ith neuron at discrete-
time t. The variables 7;(r) and {;(¢) denote internal states
for feedback inputs from the constituent neurons and for
the refractoriness, respectively. k; and k, are the decay
parameters for the feedback inputs and the refractoriness,
respectively. a denotes refractory scaling parameter. The
parameters w;; and a; denote the synaptic weights from the
Jjth neuron to the ith neuron and the bias to the ith neuron
(a; = a for every neuron in this paper), respectively. Out-
put function of the neuron is denoted by f; in this paper,
we use the logistic function represented by

f) = “

1+ exp(—y/e)
where ¢ is a parameter for the steepness of the
function[1][2]. We examine on the associative chaotic neu-
ral network with 16 chaotic neurons. The stored patterns
for the network are three 16-dimensional binary patterns
that are orthogonal with each other and with average fir-
ing rate of each pattern is set to be equal to 0.5. There-
fore, the synaptic weights are determined by the following
equation[12][13].
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with w; = 0 where xgp ) is the ith component of the pth

stored pattern. X denotes spatially averaged value of the
stored patterns.

In the following numerical experiment, we use the three
orthogonal stored patterns as shown in Fig.1.
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Figure 1: Stored patterns of the associative chaotic neural
network with 16 neurons. Each row is a stored pattern vec-
tor. The filled and open squares in the rows represent 1 and
0 that correspond to the neuronal outputs, respectively.

It has been reported that the network exhibits chaotic se-
quential patterns that include the stored patterns when the
parameters of the network are set to certain values[2]. It
has also been reported that the network, as a whole, in
such chaotic retrieval of the stored patterns shows orbital
instability which implies deterministic chaos[3]. Figure 2
shows the time evolutions of direction cosine dc” between
the output pattern of the original network with 16 neurons
and the three stored patterns of Fig.1. Such chaotic asso-
ciative dynamics is treated as control case that is going to
be compared with the case with the randomly connecting
external inputs in the present paper. The direction cosine is
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computed by

N

1
D)) = . (p)
dc” (1) = N ,Ezl xi(0x;,

(6)

for the pth pattern, where the pth patterns for p = 1,2,3
represent the patterns of Fig.1 from the top to the bottom
row, respectively. When the network retrieves the pth exact
stored pattern and its reverse one, dc? becomes 1 and —1,
respectively.
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Figure 2: Time evolutions of the direction cosine between
the output pattern of the original network with 16 neurons
and the three stored patterns.

3. Associative Chaotic Neural Network with Randomly
Connecting External Inputs

We consider the retrieval characteristics of the associa-
tive chaotic neural network with randomly connecting ex-
ternal inputs. Here, we intend to mimic the input from the
neurons caused by adult neurogenesis by the randomly con-
necting external inputs. For the network with randomly
connecting external inputs, the updating equation (3) of the
internal state { is replaced by the following equation,

G+ 1) = k£i(0) — axi(t) + a; + (1), @)

where ¢;(f) denotes randomly connecting external input to
the ith neuron at . Here, the value of external input e; de-
pends on the index i. The indexes are grouped into the
following two sets, one is the set of active input indexes
1@ and the other is for the set of inactive ones 1. The
elements of 7@ and I are randomly determined for every
trial. In the following numerical experiments, we examined
for the two external inpus as follows.

3.1. Constant external inputs

In this case, the neuron whose index belongs to I@ re-
ceives constant input with magnitude of E for every itera-



tion. It is represented by the following equation.

{

3.2. Gaussian external inputs
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In this case, the neuron whose index belongs to I’ re-
ceives random values with Gaussian distribution of mean
and deviation are both equal to E. It is represented by the
following equation.

ei(t) = {

where N(E, E) denotes Gaussian distribution of mean and
deviation are both equal to E. In this case each neuron
belongs to I® receives random values generated by a quasi-
random value generator for every iteration.

N(E,E) (i€ I9)

0 (i € ID) ®)

4. Results of Numerical Experiments

In this paper, we examined for one to eight of randomly
connecting external input(s) with magnitude of E = 0.5
and 1. We attempt to see the difference between the re-
trieval characteristics of the network with the constant and
Gaussian inputs. For each case, 20 trials for random con-
nection of the external inputs are examined and the retrieval
characteristics are evaluated by averaging the 20 trials.

The results of the experiments are summarized in Figs.3
and 4. Figure 3 shows the ratio of the averaged retrieval
frequency of the network with external input to that of the
original network. Figure 4 shows the switching frequency
among the three stored patterns. The switching frequency
is important index to evaluate associative dynamics since
we intend to realize not static association by the conven-
tional associative network but dynamic association by the
chaotic neural network.

From Fig.3 we find that the retrieval frequency of the
network with Gaussian external input does not depend on
both the number of the external inputs and their magnitude,
however, for the constant inputs, it shows non—monotonic
change for the number of the external inputs. For larger
magnitude of the constant external inputs and many inputs,
there is a tendency that the network retrieves only one of
the stored patterns that is not good for the dynamical asso-
ciation. Such example is shown in Fig.5. Figure 5 shows
an example of time evolutions of the direction cosine be-
tween the output pattern of the original network and the
three stored patterns with eight constant external inputs of
E = 0.5. In this case the retrieval frequency is high but the
switching frequency among stored patterns is low. Such
retrieval is not what we are intended to realize by the asso-
ciative network with chaotic neurons. Therefore, not only
the retrieval frequency but also the switching frequency
among the stored patterns is important. From Fig.4 the
switching frequency of the network with the constant in-
puts is not monotonic to the number of the inputs while the
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frequency of the network with the Gaussian inputs shows
nearly monotonic characteristics to the number of inputs.
For the Gaussian inputs, the larger the magnitude of the
input is, the higher the switching frequency becomes.
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Figure 3: The ratio of retrieval frequencies of the network
with constant and Gaussian inputs with magnitude of E =
0.5 and 1 to the network without inputs by changing the
number of the external inputs. The open and filled circles
denote the case with the constant inputs with £ = 0.5 and 1,
respectively. The open and filled triangles denote the case
with the Gaussian inputs with £ = 0.5 and 1, respectively.

5. Conclusions and Discussions

We numerically analysed the retrieval characteristics of
the associative chaotic neural network with randomly con-
necting external inputs. We intend to mimic the input from
the neurons caused by adult neurogenesis by the randomly
connecting external inputs.

As the result, when the inputs are constant, the relation-
ship between the retrieval frequency of the stored pattens
and the number of inputs does not show monotonic charac-
teristics. Such charactericsitc is also found in the switch-
ing frequency among stored patterns for the constant input
cases. When the external inputs are with Gaussian distri-
bution, the inputs make less frequent retrieval of the stored
patterns than the case without the inputs, regardless of the
number of the inputs. On the other hand, the switching
frequency of the network with the Gaussian inputs shows
nearly increasing monotonic characteristics to the number
of inputs.

From the above results, randomly connecting external
inputs with magnitude of Gaussian distribution may have a
role of eliminating the existing memory and may make the
network ready to add new memory. Such a role might be a
hypothesis on the possible role of the adult neurogenesis in
Hippocampus. As the dynamical associative memory, the
result that the switching frequency can be controlled by the
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Figure 4: Switching frequencies among stored patterns of
the network with constant and Gaussian inputs with magni-
tude of E = 0.5 and 1 by changing the number of the exter-
nal inputs. The open and filled circles denote the case with
the constant inputs with £ = 0.5 and 1, respectively. The
open and filled triangles denote the case with the Gaussian
inputs with £ = 0.5 and 1, respectively.

number of the Gaussian inputs may be useful for learning
of new memory. Examining for such hypothesis includ-
ing learning new memory and with biologically plausible
inputs is a future problem.
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