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Abstract—It is well known that the time delayed feed-
back control has an ability to stabilize unstable periodic or-
bits targeted in chaotic attractors. On the other hand, the ef-
fects of control on non-target periodic orbits have not been
discussed. In this paper, harmonic balance analysis of con-
trolled periodic systems demonstrates that non-target orbits
annihilate as feedback gain is increased. The annihilation
is numerically confirmed in the controlled two-well Duff-
ing system.

1. Introduction
Since the OGY method was proposed [1], stabilizing un-

stable periodic orbits embedded in chaotic attractors has
been extensively studied in the field of nonlinear dynamics
[2]. Among several proposed methods, the time delayed
feedback control [3] has especially occupied the interest of
researchers over this decade because of its feasibility to ex-
perimental systems. The control method is easily imple-
mented without the exact model of controlled object nor
complicated computer processing for reconstruction of un-
derlying dynamics. The target unstable periodic orbits are
stabilized by control signal only relying on the difference
signal between the present output signal and the past one.
The feasibility of the control method has been experimen-
tally demonstrated in a wide variety of systems including
electronic circuits [4], laser systems [5], gas charge sys-
tems [6], mechanical oscillators [7], chemical systems [8].
In addition, control characteristics has been discussed with
focusing on the local stability of target orbits under control
input [9]. As one of notable results, the odd number con-
dition has been derived first for discrete systems [10] and
subsequently extended to continuous systems [11, 12]. The
odd number condition provides a class of unstable periodic
orbits that cannot be stabilized by the control method and
extended ones [13, 14]. An improved version of the control
method has been proposed to circumvent the odd number
condition [15].

On the other hand, there still remain open problems on
clarification of control performance [9]. In particular, the
global dynamics and related control characteristics have
not been clarified [16]. The global dynamics of a controlled
system is described by the structure of an infinite dimen-
sional phase space, which is function space due to the time
delay including feedback loop. So far, the authors have dis-
cussed the global dynamics in function space for the con-
trolled two-well Duffing system. They reported that the
original chaos producing structure is simplified under large

feedback gain and then control performance is improved
[18]. The observed change from irregular to smooth basin
boundary [17] and quick convergence to targets without
long chaotic transient [18] suggest that the perturbation by
control signal changes not only the stability of the target or-
bits but also the global structure of phase space. However,
there has been no explanation on the mechanism changing
global phase structure. The clarification of the mechanism
is quite important in practice of controlling chaos, because
the chaotic attractors are possibly destroyed by the stability
change of target orbits. The destruction of chaotic attrac-
tors causes long chaotic transient and complicated basin
structure against the purpose of control.

In this paper, we discuss the effects of control signal on
non-target periodic orbits in periodic system under time de-
layed feedback control. We particularly focus on the an-
nihilation of the non-target orbits whose periods are inte-
ger multiples of the time delay for the increase of feedback
gain. The harmonic balance analysis [21] of the periodic
systems under control demonstrates that the non-target or-
bits are destroyed under large feedback gain, while the ex-
istence and location of the periodic orbits with the target
period are not influenced by control inputs. The annihi-
lation of non-target orbits are closely related to the global
phase structure of the controlled systems [19]. Since the
non-target orbits are originally embedded in chaotic attrac-
tor, it is expected that the original global structure produc-
ing chaos is simplified after the annihilation of non-target
orbits. The suggested annihilation is confirmed for the two-
well Duffing system under control using harmonic balance
method.

2. Harmonic balance analysis of periodic system under
control

As first suggested by Pyragas [3], unstable periodic or-
bits embedded in chaotic attractors can be stabilized by us-
ing continuous feedback of the present output signals and
the past ones. In particular, control of unstable period-τ
orbits in a chaotic system is described as follows:

{

ẋ = F (t, x, u)

u = K[g(xτ ) − g(x)],
(1)

where ẋ = F (t, x, u) corresponds to the chaotic system,
x = x(t) and xτ = x(t − τ) denote the current and
past state vector of the system, respectively, and u shows
control signal. The uncontrolled system ẋ = F (t, x, 0)
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generates a chaotic attractor which contains the target un-
stable period-τ orbits. The control method is easily im-
plemented to experimental systems without identifying the
exact model of the chaotic system and reconstructing un-
derlying dynamics from experimental data. The control
signal u(t) is simply obtained by the product of feedback
gain K and the difference between the present output sig-
nal g(x) and the past output g(xτ ), as shown in Eq. (1). τ
is the time delay adjusted to the period of the target unsta-
ble periodic orbit embedded in the chaotic attractor. If the
time delay is precisely adjusted, convergence of solutions
to the target orbits makes the controlled system (1) degen-
erate from an infinite dimensional system with time delay
to the original finite dimensional one. It follows that the
control signal converges to null when control is achieved.
Thus, both number and location of the orbits with the same
period as the targets are conserved under any feedback gain
[20].

On the other hand, those of non-target orbits are changed
in general. In the following, we demonstrate the orbits
whose periods are integer multiples of the time delay are
expected to annihilate as feedback gain is increased. The
harmonic balance method is applied to approximate the
steady state solutions in periodic systems under time de-
layed feedback control. The harmonic balance method is
a well known approach to analyze nonlinear oscillation in
physical systems [21]. A periodic solution of a nonlinear
system is represented as a truncated Fourier series expan-
sion with unknown Fourier coefficients. The approximated
solution is obtained by determining the coefficients as a so-
lution of nonlinear algebraic equations that derived by sub-
stituting the Fourier series to the differential equation.

We here consider the following n-dimensional periodic
system under time delayed feedback control:

{

ẋ = f(t, x) + u,

u = K[xτ − x],
(2)

where f(t + T, x) = f(t, x) ; ω = 2π/T denotes the pe-
riodic system and hereafter frequency component of ω is
called fundamental component. The time delay τ is here
adjusted to the fundamental period T of f . K shows n-
dimensional feedback gain matrix � The above equation is
a special form of Eq. (1) obtained under F (t, x, u) =
f(t, x) + u and g(x) = x. For the further discussion,
Eq. (2) is rewritten as follows:

ẋ − f(t, x) = K[xτ − x]. (3)

Suppose that the system (2) has a period-mT orbit x(t)
satisfying x(t) = x(t + mT )(m ≥ 1; integer) for any
t. Then x(t) is approximated by the following truncated
Fourier series expansion:

x(t) = a0 +

N
∑

k=1

(

a2k−1 cos
k

m
ωt + a2k sin

k

m
ωt

)

,

(4)
where ai = (ai1, ai2, · · · , ain)T ∈ R

n(i =
0, 1, 2, · · · , 2N) denotes Fourier coefficient vector. N is

the maximum order of component which should be taken
into account to obtain approximate solutions. From Eq. (4),
the ẋ(t) and x(t − τ) − x(t) are obtained as follows:

ẋ(t) =
ω

m

N
∑

k=1

(

ka2k cos
k

m
ωt − ka2k−1 sin

k

m
ωt

)

,

(5)

x(t − τ) − x(t) (6)

=

N
∑

k=1

[

{

a2k−1

(

cos
k

m
ωτ − 1

)

− a2k sin
k

m
ωτ

}

× cos
k

m
ωt +

{

a2k−1 sin
k

m
ωτ + a2k

(

cos
k

m
ωτ − 1

)}

× sin
k

m
ωt
]

. (7)

Substituting Eqs. (4) (5) and (7) into Eq. (3) and equating
every component, one can derive the following equations
determining the Fourier coefficient vectors:

F
m

i
(a) = KU

m

i
(a) (i = 0, 1, · · · , 2N), (8)

where a = (aT
0 , aT

1 , · · · , aT

2N
)T . F

m

i
(a) and U

m

i
(a) are

defined for k = 1, 2, · · · , N in the following:






















































F
m

0 (a) = − 1

mT

∫

mT

0

f(t, x(t))dt

F
m

2k−1(a) =
ω

m
ka2k

− 2

mT

∫ mT

0

f(t, x(t)) cos
k

m
ωtdt,

F
m

2k(a) = − ω

m
ka2k−1

− 2

mT

∫ mT

0

f(t, x(t)) sin
k

m
ωtdt

,

(9)























U
m

0 (a) = 0,

U
m

2k−1(a) =

{

a2k−1

(

cos
k

m
ωτ − 1

)

− a2k sin
k

m
ωτ

}

,

U
m

2k(a) =

{

a2k−1 sin
k

m
ωτ + a2k

(

cos
k

m
ωτ − 1

)}

.

(10)

Note that U
m

2k−1(a) = U
m

2k
(a) = 0 for k = jm(j =

0, 1, · · · ), since cos
k

m
ωτ − 1 = sin

k

m
ωτ = 0. The re-

lations are considered as constraint conditions for solving
remaining equations. For m = 1, these relations confirm
that both the existence and location of orbits with period-
τ is independent of feedback gain, since U

m

i
(a) = 0 for

all i, that is, the control input do not have a direct current
component, the fundamental and its higher harmonics.

As for the periodic solutions with m ≥ 2, one can expect
that they cease to exist for large feedback gain, because one
can find K for some i such that

||Fm

i
(a) − KU

m

i
(a)|| ≥

∣

∣||Fm

i
(a)|| − ||KU

m

i
(a)||

∣

∣ > 0.
(11)
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in a given bounded domain including the origin and satisfy-
ing the constraint conditions, if F

m

2k−1(0) = F
m

2k
(0) = 0

for k 6= jm and F
m

i
(a) is bounded in the given do-

main. In particular, if K is a diagonal matrix, that is,
K = diag(K1, K2, · · · , Kn);Ki ≥ 0, the above inequal-
ity is satisfied if one of the elements is sufficient large. If
the F

m

i
(a) are polynomial in a, it is also conjectured that

the periodic solutions satisfying Eqs. (8) annihilate at a cer-
tain feedback gain, because the solutions of Eqs. (8) are
given by the intersecting points of the surface and plane
built by the left-hand sides and right-hand sides of Eqs. (8)
in the Euclidean space R

n(2N+1), respectively. As the
planes are sloped by increasing feedback gain, a pair of
intersecting points approach each other and finally coin-
cide when the plane are tangent to the surface. We should
note that another possibility that non-target orbits degener-
ate into target ones without annihilation. The degeneration
occurs, when the amplitude of the fundamental component
increases, while that of subharmonic ones converge to zero,
so that the equality of Eqs. (8) remains satisfied for the in-
crease of feedback gain. It seems that the degeneration of
non-target orbits is related to the period-doubling bifurca-
tion of target orbits, which is often observed in time de-
layed feedback controlled systems.

In this section, the annihilation of non-target periodic or-
bits in the controlled system has been discussed based on
the harmonic balance method. We show that non-target pe-
riodic orbits with period-mT annihilate as feedback gain is
increased. In the next section, the conjecture is numerically
confirmed for the controlled two-well Duffing system.

3. Annihilation of non-target orbits in controlled Two-
well Duffing System

The two-well Duffing system is a model for the first-
mode vibration in the magnetoelastic beam system under
sinusoidal forcing [22]. The two-well Duffing system is
here controlled by the signal u(t):











ẋ(t) = y(t)

ẏ(t) = −δy(t) + x(t) − x(t)3 + A cos ωt + u(t)

u(t) = K[y(t − τ) − y(t)],

(12)

where x(t) and y(t) denote the displacement and velocity
of the two-well Duffing system, respectively. The u(t) is
generated from the difference signal between the current
velocity and past one. The parameter of the original sys-
tem is here fixed at (δ, A, ω) = (0.3, 0.34, 1.0), where the
system generates the chaotic attractor [23]. δ denotes the
damping coefficient. A represents the forcing amplitude
and ω the frequency. The detailed dynamics under ω = 1.0
was summarized in [23]. τ is adjusted to 2π for stabiliz-
ing two symmetric inversely unstable periodic orbits with
period-2π

We here apply the harmonic balance method to approxi-
mate period-6π orbits of the two-well Duffing system by a

 0
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Figure 1: Amplitude characteristic of non-target period-
6π orbits (solid) and target period-2π orbits
(dashed).

truncated Fourier series as follows:

x(t) = A0 + A1 cos t + B1 sin t + A2 cos
1

3
t + B2 sin

1

3
t.

(13)

Substituting Eq.(13) into Eq.(12) and equating each com-
ponent, one can derive the following equations:

A0

(

A2
0 +

3

2
A2

1 +
3

2
B2

1 +
3

2
A2

2 +
3

2
B2

2

)

− A0 = 0,

(14)

3A1

(

A2
0 +

1

4
A2

1 +
1

4
B2

1 +
1

2
A2

2 +
1

2
B2

2

)

(15)

+
1

4
B2(3B

2
2 − A2

2) − 2A1 + δB1 − B = 0,

3B1

(

A2
0 +

1

4
A2

1 +
1

4
B2

1 +
1

2
A2

2 +
1

2
B2

2

)

(16)

+
1

4
B2(B

2
2 − 3A2

2) − 2B1 − δA1 = 0,

3A2

(

A2
0 +

1

2
B2

1 +
1

2
A2

1 +
1

4
B2

2 +
1

4
A2

2

)

− 10

9
A2 +

δ

3
B2

(17)

+
3

4
A1(A

2
2 − B2

2) +
3

2
B1A2B2 =

K

2

(

−B2 +
A2√

3

)

,

3B2

(

A2
0 +

1

2
A2

1 +
1

2
B2

1 +
1

4
A2

2 +
1

4
B2

2

)

− 10

9
B2 −

δ

3
A2,

(18)

+
3

4
B1(A

2
2 − B2

2) − 3

2
A1A2B2 =

K

2

(

B2√
3

+ A2

)

.

(19)
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Figure 2: Period-6π orbits numerically traced for feed-
back gain [19]. The orbits originally embedded
in chaotic attractor annihilate by saddle-node bi-
furcation for large feedback gain.

Figure 1 shows amplitude characteristics of the period-2π
orbits (target) and period-6π orbits (not target) obtained by
numerically solving Eq. (14)-Eq. (19). Each solid curve
shows an amplitude characteristic of a period-6π orbit. We
observe six period-6π curves having roots in K = 0 and
then confirm that each curve annihilates with the corre-
sponding one as feedback gain is increased. On the other
hand, the orbits with period-2π denoted by the dashed line
do not change their location for any feedback gain. The re-
sult here obtained qualitatively agrees with the our previous
result showing that non-target period-6π orbits annihilate
by saddle-node bifurcation as shown in Fig. 2 [19].

4. Concluding Remarks

In this paper, we have discussed the effect of time de-
layed feedback control on non-target unstable periodic or-
bits embedded in chaotic attractors. By applying the har-
monic balance method to controlled periodic systems, we
demonstrated that the increase of feedback gain causes the
annihilation of the non-target orbits whose periods are in-
teger multiples of time delay. The annihilation of the non-
target orbits originally embedded in chaotic attractor sug-
gests that the global phase structure under control become
simple as feedback gain is increased.
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