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Abstract—Neuromorphic computing based on single-
electron circuit technology is gaining prominence because
of its massively increased computational efficiency and the
increasing relevance of computer technology and nanotech-
nology [1, 2]. The maximum impact of these technologies
will be strongly felt when single-electron circuits based
on fault- and noise-tolerant neural structures can operate
at room temperature. In this paper, inspired by stochastic
resonance (SR) in an ensemble of spiking neurons [3], we
propose our design of a basic single-electron neural com-
ponent and report how we examined its statistical results
on a network.

1. Introduction

In this paper, motivated by the excellent noise- and fault-
tolerance of the nervous systems of living organisms, we
propose a novel architecture for single-electron circuits that
use thermal noises for neural computation.

A single-electron circuit is one that creates electronic
functions by controlling movements of individual electrons
[4]. The circuit uses tunneling junctions, each of which
consists of two conductors facing each other very closely
(statically, they are normal capacitors). Under a low-
temperature environment, electron tunneling is governed
by the physical phenomenon called the Coulomb blockade
where an electron does not tunnel through a junction if the
tunneling increases the circuit’s electrostatic energy (Ec).

To comply with the Coulomb blockade, the capacitance
of a tunneling junction must be sufficiently small; e.g., if
we use 1 pF of capacitance, Ec corresponds approximately
to 1 mK in temperature. Generally, observing the Coulomb
blockade in practical experimental environment (e.g., T ∼
0.1 K) is difficult because the blockade effect is disturbed
by thermal fluctuations. Therefore, elemental devices of
single-electron circuits; i.e., tunneling junctions and capac-
itors, must be constructed in nanoscopic scale (lower than
a few tens of nano meters).

Recent progress in nanotechnology has accelerated ad-
vances in nanoscale processing; e.g., elemental logic gates
and memory cells for single-electron LSIs have been pro-
posed in the literature, and reports of their fabrication have
appeared. However, many problems still exist for practical
use of single-electron circuits. The purpose of this work
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Figure 1: Construction of single-electron box.
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Figure 2: Transient response of single-electron box.

is finding a way to cancel the effects of thermal fluctua-
tions in terms of circuit architecture, instead of improving
nanoscale processing. Here we employ biological comput-
ing architecture found in nature, for error compensation, in-
stead of conventional deterministic computing architecture,
because every living thing uses thermal noises to perform
robust and fault-tolerant information processing in natural
environments. Oya et al. proposed a single-electron com-
petitive neural network and demonstrated that the network
operated correctly when T ≤ 1 K [5]. In this paper, we pro-
pose a single-electron neural circuit that can operate at high
temperature by exploiting stochastic resonance (SR) in an
ensemble of spiking neurons [3].

2. Neuron Circuit with Single-Electron Box

In this work, we use a single-electron box [4] as a neu-
ron. Figure 1 is a schematic presenting the basic construc-
tion of a single-electron box that consists of the tunneling
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Figure 3: Summing network of N single-electron boxes.

junction Cj and biasing capacitor C. When bias voltage
Vd is increased, an electron tunnels junction Cj from the
ground to node A and the node charges the electron as
a floating (excess) electron that is not cancelled by back-
ground positive ions of the device material.

In a low-temperature environment where electron tun-
neling is governed by the Coulomb blockade effect, elec-
trons are charged at node A so that the free energy of a
circuit is minimized. The number of the electrons is rep-
resented by a staircase function of bias voltage Vd, and is
changed discontinuously at

Vd =
(n ± 1)e

2C
, (1)

where e represents the charge of an electron. As a result
of increasing and decreasing the number of electrons, the
saw-wave characteristic of potential is observed at node A
for increasing Vd (Fig. 2).

In a high-temperature environment, where the Coulomb
blockade effect is disturbed by thermal fluctuations, elec-
trons tunnel the junction randomly with the following rate

Γ =
1

e2RT

∆E
1 − exp(−∆E/kBT )

, (2)

where ∆E represents the difference of electrostatic energy
in the circuit (decrease of the energy by the electron tun-
neling), RT the junction resistance, kB the Boltzmann con-
stant, and T the temperature. By increasing the tempera-
ture, the rate increases exponentially, which enables elec-
trons to tunnel the junctions even when ∆E < 0. This is an
obstacle to our designing single-electron circuits based on
the Coulomb blockade effect.

Now let us consider an SR among N single-electron
boxes, as illustrated in Fig. 3. When single-electron boxes
are not connected to each other, electron tunneling occurs
independently in each box’s junction. As in the work of
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Figure 4: Stochastic resonance in ensemble of single-
electron boxes.

Collins et al. [3], we apply a common input to all the boxes
and calculate the summation of the outputs of all the boxes.
For simplicity, we apply a common spike train S in of fre-
quency f to all the boxes, and rather than consider practical
circuits that calculate the summation of box outputs1. The
node potential Vi of the i-th box is increased by the input
spike, while the magnitude of the input is set to a very low
value so that no electron tunnels from the ground to the
node as a result of this input2. Under this condition, in-
creasing the magnitude of thermal noise (temperature) en-
ables electrons to tunnel each junction.

Figure 4 shows simulation results of an ensemble of the
single-electron boxes for N =1, 5, 10 and 50 ( f = 100
MHz, C = Cj = 10 aF, RT = 1 MΩ). We increased the
temperature from 0 to 300K (room temperature), and cal-
culated the following correlation value between the input
spikes and the summed output:

C1 =
〈S in · S out〉 − 〈S in〉〈S out〉√
〈S 2

in〉 − 〈S in〉2
√
〈S 2

out〉 − 〈S out〉2
, (3)

where S out ≡ ∑N
i Vi(t). The results revealed characteristic

signatures of SR behavior: a rapid rise to a peak, and then a
decrease at high temperatures. We observed that the mag-
nitude of C1 increased as N increased, as expected. The
resonant temperature was approximately 20 K for all the N
values with this parameter set.

Our primary interest here is whether single-electron box
neurons can overcome thermal fluctuations with practical
physical-parameter sets for tunneling junctions. Contrary
to expectations, the correlation value was large, 0.7, even
when N = 50, and it increased as N increased. Collins et
al. [3] reported that the correlation value became almost 1

1When one attaches the summing circuit, the electron tunneling be-
comes dependent at each junction because the tunneling rate is represented
by a function of “total electrostatic energy” of all the boxes.

2In other words, a neuron is stimulated by subthreshold input spikes,
if we consider a tunneling phenomenon as a neuron’s spike generation.
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Figure 5: Single-electron competitive neural network.

when N = 1000 independently of the magnitude of noises,
which implies that, if we consider an ensemble of the neu-
rons as a transmission line, an input signal is completely
transmitted on the line even when the line is fluctuated by
extensive noises. Considering this mechanism, we hypoth-
esize a possible architecture for a single-electron circuit
that has functions not only a transmission line but also as
an intelligent computation where the degree of parallelism
increases as N increases. As the first step, we propose a
novel architecture for winner-take-all computation, where
a maximum input to the circuit among the external inputs
is selected, based on the SR among single-electron boxes.

In this research, we employ a competitive neural network
that has inhibitory all-to-all connections between neurons.
The basic construction is described in references [5, 6],
where N excitatory neurons excite one inhibitory neuron
and the inhibitory neuron (global inhibitor) inhibits all the
excitatory neurons. Under this construction, when input
spike trains are applied to all the excitatory neurons through
excitatory synapses with fixed weight strength, a neuron
that receives high-frequency spikes remains activated (win-
ners) but the remainder of the neurons are attenuated sig-
nificantly (losers). The number of winners increases as the
strength of the inhibition decreases.

Figure 5 describes the construction of a competitive neu-
ral network consisting of an ensemble of single-electron
boxes. Three excitatory neurons (M1, M2 and M3) and one
global inhibitor are presented. Each excitatory neuron con-
sists of an ensemble of N single-electron boxes, and each
box receives a common input spike to a neuron (Ii). An
output of the neuron is defined by the summation of the
box outputs. The global inhibitor performs the summa-
tion (N outputs of the boxes are represented by one axon
in Fig. 5). This inhibitor calculates the summation of N×3
outputs from all the boxes, and inhibits all the neurons. To
maintain the inhibition for short time τ, we employ the fol-
lowing inhibitor dynamics

τẏ = −y + w
M∑
i

N∑
j

Vi j(t) (4)
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Figure 6: Frequency response of competitive neural net-
work consisting of ensemble of single-electron boxes.

where y represents the output of the inhibitor, w the in-
hibitory connection strength, M the number of neurons (=
3 in Fig. 5), N the number of single-electron boxes in each
excitatory neuron, and Vi j the node voltage of j-th box
in i-th excitatory neuron. Shunting inhibition, where the
strength of the inhibition is proportional to the amount of
y, decreases the node potential of each neuron.

Results of simulating the single-electron competitive
neural network are shown in Fig. 6 (for N = 10). Param-
eter values of all the boxes were the same as the results
presented in Fig. 4. We applied input spikes of 120 MHz,
80 MHz and 40 MHz to M1, M2 and M3, respectively. The
temperature was set at 20 K where C1 was the maximum
for all N in Fig. 4. Figures 6(a) and (b) show frequency re-
sponses of

∑
in Fig. 5 and the LFP output. In both figures,

the peak frequency agreed well with that of input spikes
(40 MHz, 80 MHz and 120 MHz).

Figures 6(c), (d), and (e) are plots of the frequency re-
sponses of M1, M2 and M3, respectively. The peak fre-
quency of M1 was 120 MHz (c), while that of M2 and M3

were 40 MHz (d, e). A neuron that received high frequency
spikes (120 MHz) remained activated, while the rest of
the neurons that received lower frequency input spikes (40
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Figure 7: Results of neural competition in ensemble of
single-electron boxes.

MHz) were inhibited; this indicates that the three neurons
competed with each other correctly even at T = 20 K.

Our next interest is to examine the temperature charac-
teristic of the proposed circuit. Figure 4 suggests that the
noise performance increases monotonically as N increases.
Here we define a competitive performance as i) degree
of nonlinearity of neuron’s outputs for the neuron number
where the input spike frequency is linearly increased as the
neuron number increases, and ii) ratio of minimum peak
power of a winning neuron to the averaged power of the
neuron (minimum signal-to-noise ratio in a winning neu-
ron). We examined the competitive performance of the
network with N =1, 10 and 50, for increasing temperature.
Figure 7 plots the results.

As shown in Fig. 7(a), when N = 1, M2 received spikes
of 80 MHz and survived for the given temperature sets (T =
20 K, 100 K and 200 K), and this means that each neuron
competed incorrectly. When N = 10 [Fig. 7(b)], M1 re-

ceived spikes of the highest frequency (120 MHz), and sur-
vived for all the temperature sets, while M2 and M3 were
sufficiently inhibited. The S/N for T = 20 K was 15.7 and
that for 200 K was 5.7. The result for N = 50 is shown
in Fig. 7(c); each neuron competed correctly at T = 300
K and the S/N was 8.3. These results prove that, when a
single-electron competitive neural network is constructed
by exploiting the SR phenomena, the winners and losers at
room temperature can be discriminated.

3. Summary

We proposed a single-electron competitive neural net-
work based on stochastic resonance (SR) in an ensemble of
single-electron boxes that can operate at room temperature.
First, using realistic physical parameters, we confirmed the
SR behavior of single-electron boxes. The resonant tem-
perature was 20 K, independent of the number of boxes
(N). Using numerical simulations, we demonstrated that
the winners and losers of the SR based network (N = 50)
can be discriminated even at room temperature.
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