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Abstract—A threshold system is a typical sys-
tem that shows noise-induced response to weak in-
put, called stochastic resonance. When this system is
considered as a digital communication channel, noise-
assisted information transmission can in some cases be
observed in the sense that a subthreshold binary sig-
nal can be transmitted by adding moderate noise in-
tensity to the system. We elucidate this noise-assisted
transmission by the following two steps: we show how
transition probabilities are parametrized by noise in-
tensity and then we show how mutual information be-
tween input and output signal depends on the tran-
sition probabilities. From our analysis, we can show
that the appearance of noise-assisted transmission de-
pends on the parametric path in the space of transition
probabilities.

1. Introduction

Noise-induced effects in nonlinear systems have re-
cently received considerable attention. In particular,
stochastic resonance (SR) [1] has been studied in var-
ious systems. SR means that the resonance response
of a noisy nonlinear system to a subthreshold signal
can be optimized by noise intensity. The basic SR
mechanism is often explained using a system model
with a bistable potential modulated by a subthreshold
sinusoid plus some amount of noise. The subthresh-
old sinusoid alone cannot overcome the potential bar-
rier of the bistable system, but the addition of noise
assists the switching movement between the wells of
the bistable potential. This switching timing is occa-
sionally synchronized with the external periodic signal.
The power spectrum of the timeseries of the system’s
state has peaks at the drive-signal frequency and its
harmonics. To evaluate the resonance response, we
can calculate the SNR from the power spectrum. We
use the peak power at the signal period as the signal
power and the average power around the signal period
as the noise power.

Information theoretical approaches have been used

to study SR of aperiodic signals, for continuous or bi-

nary signals [2-11]. In these studies, correlation, bit
error probability or mutual information is used to mea-
sure transmission between input and output. SR in a
threshold system with binary signal as input and con-
tinuous noise is related to the signal detection prob-
lem [7, 8, 10] in previous engineering studies [12]. Sub-
optimal thresholds can results in noise-assisted detec-
tion [13]. When we regard these systems as commu-
nication channels, we can find that the SR in such
systems is equivalent to noise-assisted signal transmis-
sion [9)].

In this paper, we explain noise-assisted informa-
tion transmission in threshold systems. We resolve
this noise-assisted transmission to the following two
steps. We show at first how transition probabilities are
parametrized by noise intensity and then we show how
mutual information between input and output signal
depends on the transition probabilities. Therefore, we
can show that the appearance of noise-assisted trans-
mission depends on the parametric path in the space
of transition probabilities.

2. Noise-assisted transmission in threshold

systems

A threshold system is a typical system exhibiting
SR. Classification by threshold systems is equivalent
to the task in signal detection [12] of deciding whether
there is a dc signal in noise. As in Ref. [9, 10], we con-
sider the following signal detection problem. A binary
input signal has values 0 (input 0) and 1 (input 1) and
prior probabilities for each input bit are defined as pg
and p1(=1—py), respectively. Noise is Gaussian with
mean 0 and variance o2. We define Py(z) and P;(z)
as two probability distributions corresponding to the
inputs 0 and 1 with added noise. Figure 1 shows an
example of the probability distributions, assuming for
simplicity that pg = p1 = 1/2. We consider the thresh-
old detection of the signal in the presence of noise, with
thresholds as shown in Fig. 1.

Standard signal detection techniques assume com-
plete knowledge concerning the values (levels, ampli-
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Figure 1: Detection of {0,1} signals with noise inten-
sity o = 1/2. Vertical thick lines show examples of
thresholds for detection, optimal threshold fopt = 1/2
and a suboptimal threshold 8 = 2.

tudes) of the binary signals and so we can calculate
the optimal threshold fop¢. The optimal threshold
maximizes correct detection probability and simulta-
neously minimizes error probability for decision. All
other thresholds are suboptimal. When the values of
the binary signals are unknown, we cannot determine
the optimal threshold. If we fix the threshold arbi-
trarily, then a finite noise intensity o can maximize
the detection probability. This is an example of noise-
assisted detection. Noise-assisted detection does not
occur for all suboptimal thresholds. In this example,
suboptimal thresholds located on a value larger than
the true value of input 1 or smaller than the value
of input 0 show noise-assisted detection. Here we note
that the detection probability for suboptimal threshold
is always smaller than the one for optimal threshold.
Here we consider information transmission instead
of the signal detection. We can regard this threshold
system as a communication channel as shown in Fig. 2,
characterized by transition probabilities in this chan-
nel. Here we define pgg as probability that input 0 is

1:p1 1
P1o

Po1
0:po 0

Figure 2: Communication channel model.

detected correctly and also define pi1g as probability

that input 0 is detected as input 1. pg; and pyy for
input 1 are defined similarly. These transition proba-
bilities can be calculated given threshold 6 as follows.

6
/ Po(l‘)dx =1 — P10,

Poo =
P10 = / Po(x)d:v,
)
0
= / Py (x)dz, (1)
—00
P11 = / Py(z)dr =1 — por.
)

We note that pgg, p1o, po1, and p1; are functions of o,
such as poo (), because Py(z) and Py (z) have Gaussian
distributions with various o. We consider p1g and pg;
as independent variables.

To measure signal transmission against noise inten-
sity o, we can derive input-output mutual information
as follows.

I(o) = Z

in,oute{0,1}
I(po, p1, P10, Po1)
—{(1 = p10)po + po1p1}

x log{(1 — p10)po + po1p1}

—{p1opo + (1 — po1)p1}

x log{piopo + (1 — po1)p1}

— po log po — p1log py

+ (1 = p10)polog{(1 — p1o)po}

+ p1opo log(piopo) + po1p1 log(po1p1)

+ (1 = po1)p1 log{(1 — po1)p1 }. (2)

We note that the measure is a function of o. For sub-
optimal example (f = 2), we show mutual information
dependence on ¢ in Fig. 3. We can see the existence of
a maximum in the mutual information at non-zero o.
Similar to the previous signal detection case, when the
suboptimal threshold is located on a value larger than
the value of input 1 or smaller than the value of input
0, we can see noise-assisted information transmission.
When the threshold is optimal, information decreases
monotonically with increase of o.

Next we show how the mutual information for
a general communication channel is dependent on
prior signal probabilities and transition probabilities
as in Fig. 2. Figure 4 shows mutual information
I(po, p1,P10,Po1) When py and p; are regarded as pa-
rameters (pp = p1 = 1/2) and pyp and pg; are regarded
as variables.

Since p1p and pg; are functions of o, increases of o
draw a path of transition probabilities on p19-po1 plane
such as in Fig 5. Detection by the optimal threshold
(Oopt = 1/2) corresponds to the path from (0,0) to

P(in, out)
log -
Py, (in) Pout (out)

P(in,out)
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Figure 3: Mutual information I as a function of noise
intensity o. Line shows I using a suboptimal threshold
(¢ = 2) and dotted line shows I using the optimal
threshold (gpt = 1/2)

(1/2,1/2). Detection by a suboptimal threshold corre-
sponds to the path from (1,0) close to (1/2,1/2) with
larger threshold than input 1 value, or from (0, 1) close
to (1/2,1/2) with smaller than input 0 value. These
paths are independent of py and p;.

From the above descriptions, we can determine
whether there is noise-assisted transmission or not by
following two steps. First, we draw a parametric path
for the increasing parameter ¢ on pig-po1 plane as in
Fig. 5. Second, the variation of information I with
increase of ¢ can be seen from the variation of I along
the path in Fig. 4. When the variation of information
is nonmonotonic on the path on pig-pg1 plane, we can
see noise-assisted transmission. The path by the op-
timal threshold results in decreasing information with
increases of 0. By contrast, not all paths for subop-
timal thresholds result in nonmonotonic information.
When suboptimal threshold is larger than input 1 or
smaller than input 0, the paths cause nonmonotonic
information and occur noise-assisted transmission.

Here we note that the threshold value changes the
path on p1g-po1 plane. We also note that I surface on
P10-Po1 plane changes depending on pg, p1. We empha-
size that information curve for suboptimal threshold is
always lower than the curve for optimal threshold be-
cause of the data processing lemma [14].

3. Conclusions and discussions

We explained noise-assisted information transmis-
sion in a threshold system. We resolved this noise-
assisted transmission to the following two steps. First,
we show how transition probability pi1g and pg; are
commonly parametrized by noise intensity o. This
means that increases of o vary pig and pp; and draw

Figure 4: Mutual information I as a function of tran-
sition probabilities p1g and po;.

a path on p1p-po1 plane. Second, information I varies
as a function of ¢ along the path. From these consid-
erations, we can find that the path on pig-pg1 plane
determines nonmonotonicity of input-output informa-
tion with increases of . Previous studies have shown
dependence of mutual information on noise intensity o.
From our analysis using noise-parametrized transition
probabilities, we can determine whether or not there is
noise-assisted transmission from the parametric path.

Here we have considered binary signal case, how-
ever, we can easily extend our explanation to the case
for M kinds of signal values. We have M (M — 1)
transition probabilities that give a path on M (M — 1)
dimensional space with increases of ¢. Information is
calculated through the path depending on increases of
o. We can also easily imagine that it can be extended
to continuous signal.

Standard detection assumes that all parameters for
signal and noise are known. In general, detection with
a lack of prior knowledge may result in noise-assisted
detection and information transmission for a arbitrary
threshold when the optimal threshold cannot be ob-
tained. Hence, we can utilize nonmonotonic input-
output transmission as a non-optimality check for a
detector.

Threshold system was considered as a example, how-
ever, bistable systems and excitable systems also show
noise-assisted transmission. As in Ref. [4], when we
use master equations or residence time distributions,
we can calculate noise-parametrized transition prob-
abilities in bistable systems to draw a path on pio-
po1 plane. Detail explanation about bistable systems
will be reported elsewhere. We can deal with the ex-
citable systems, similar to bistable systems. First, the
two rate distributions with input 0 and with input 1
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Figure 5: Transition probabilities pig and pgp

parametrized by o. A path is drawn for increasing
noise intensity o. One is the case of optimal threshold
(Bopt = 1/2), and the other is the case of suboptimal
threshold (# = 2) that results in noise-assisted trans-
mission.

are calculated at each o by a Fokker-Planck equation
using Ref. [15] and so on. Then, transition probabil-
ity is calculated from the two rate distributions and a
path is obtained with increases of 0. We can calculate
information dependent on ¢ and also on the path of
transition probabilities.
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