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Abstract–The statistical properties of a generalized 

diffusion process in which the white noise forcing is 
replaced by a deterministic or random impulse process are 
analyzed. General expressions linking the power spectrum 
and the probability density function of the response to the 
corresponding properties of the forcing are obtained. It is 
shown that under certain conditions the probability 
measure converges to a Wiener process. 
 
1. Introduction 

 
Recently,  Nicolis and Nicolis (2003) [1] studied the 

following differential equation 

( )d t
dt
η ξ=    (1) 

and the Langevin-type equation  

( )d t
dt
η λη ξ= − +    (2) 

with a forcing signal ξ(t) as an output variable of a low-
dimensional ergodic deterministic dynamical system. In 
particular for the signal ξ(t) of the Lorenz system a 
universal mechanism of deterministic diffusion and a fast 
convergence of the distribution  of the solution η(t) to the 
Gaussian law has been demonstrated for equation (1). 
Contrary to this case the distribution of η(t) in (2) is not 
attracted to the Gaussian one as the Lindeberg condition is 
not satisfied [1]. Shimizu in [2] gives an alternative 
analysis of the Langevin-type equation driven by a  
deterministic sequence of iterates of a chaotic map.  

In this work we focus on  equation (1) and demonstrate 
that deterministic diffusion extends to a large class of 
dynamical systems forced by a random or chaotic shot 
noise process ξ(t).  The analysis will be carried out using 
the theory of point processes [3]. 

 
2. Random and Deterministic Models of Shot Noise 
 

Shot noise is associated with random fluctuations of 
current in electrical conductors or electronic devices, due to 
the fact that the current is carried by discrete charges 
(electrons). It is important in electronics, 
telecommunication, and for fundamental physics. A 
stochastic model for the random shot noise process ξ(t) 
may be constructed as follows[4]. Suppose that electrons 
emitted at times τ1,τ2, …,τk have impulses of magnitudes 

A1, A2, …, Ak.  Let N(t) be the total number of electrons 
emitted up to time t   

{ }tktN k ≤= τ:max)( , 
then the total signal ξ(t) up to time t can be represented by 
the model  

  (
( )

1

( )
N t

k
k

t A t )kξ δ τ
=

= −∑                  (3) 

where δ is the Dirac Delta function.  Fig. 1   shows a 
realization of an impulse process. 
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Fig. 1. Schematic visualization of an impulse process 
 
Without loss of generality we assume for the occurrence 
times τk

0 1
1

0 ,
k

k k k
i

T Tτ τ τ −
=

= = + = ∑ i . 

Random and chaotic shot noise processes will be 
distinguished according to whether the inter-arrival times 
Tk are random or deterministic variables, respectively. 
A chaotic model for the shot noise ξ(t) has been first 
introduced in [5].   In this case the magnitudes Ak      and 
inter-arrival times  Tk are supposed to be generated by two 
different chaotic maps: 

 ( )1k kA A+ = Φ ,   (4) 

 ( )1kT Tϕ+ = k ,   (5) 
characterized by invariant probability measures with the 
densities  ( )Ap x and ( )Tp y , respectively.  

 
3. Response to a Shot Noise. The generalized Wiener 
process 

 
Integrating Eq. (1) we get   

1

10

( ) ( )
t

k
k

k k

t
t d rect

T
τ

η ξ τ τ η
∞

−

=

⎛ ⎞−
= = ⎜

⎝ ⎠
∑∫ ⎟  (6) 
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where . In terms of a counting 

process N(t) the process η(t) can be rewritten in a simple 
form:  

1, 0 1,
( )

0,
x

rect x
otherwise
< <⎧

= ⎨
⎩

( )( ) N ttη η= . 
 ηk 

ηk+1 

η 

t τk τk+1 

Tk 

 
Fig. 2 A solution of Eq. (1) 

 
Thus the process η(t) (Fig. 2) is a random/chaotic 
rectangular signal with step heights ηk satisfying the 
relation: 

1k k kAη η −= +    (7) 
The probability density function (pdf) and power 

spectral density (psd) for the process η(t) will now  be 
calculated. 

 
3.1. Statistical Analysis 
 
3.1.1. Probability density function 
 

We first establish that the distribution function of  η(t) 
is 

( )( ) ( ) ( )
1

k k
k

P t z P t P zη η
∞

=

≤ = ≤∑ , 

where ( ) ( ) ( )(1 1k k k )P t P t P N t kτ τ− −= < ≤ = = . On the 
basis of  the elementary renewal theorem and 

  we asymptotically establish that the pdf 

of the η(t) is the density of  the step heights 

( )lim lim 1kt k
P t

→∞ →∞
=

kη . At the 
same time from (7) these heights are  

( )1 2 1 0
1

... , 0
k

k k k k k k i
i

A A A Aη η η η− − −
=

= + = + + = = =∑  

Without loss of generality we assume zero mean for the  
magnitudes Ak   

( ) 0k kE k Aη η= = =   (8) 
and calculate the variance 

( )
1

2 2 2 2

1
2 ( ) ( )

k

k

k k A A
n

E k k nησ η η σ
−

=

= − = + −∑ c n

)i k

2

    (9) 

where  is the autocorrelation function 

(acf) and  the variance of the A

(( )A ic k E A A +=
2

Aσ k.  
Hence, for i.i.d. random or uncorrelated chaotic 
magnitudes Ak (cA(k)=0) we have 2

k Akησ σ=  . For 
correlated random/chaotic Ak  we assume that the first 
moment of the autocorrelation function cA(k) is finite  

( )
1

A
k

k c k
∞

=

< ∞∑    (10) 

and then the variance is given by 
( )2 2 1

k Ak oησ σ= + .  (11) 
This property can be easily illustrated with the 
exponentially decaying acf 

( ) 2 ,k
A Ac k r rσ 1= ⋅ < .  (12) 

Note that the chaotic magnitudes Ak  generated by the 
piecewise linear onto maps (12) [6]. We next substitute 
the acf (12) into (9) and get 

( )
( )

2 2 2
2

2 11
1 1k

k

A A

r rrk
r r

ησ σ σ
−−

= −
+ −

 

This confirms (11) at large k as . 0kr →
The acf  of the non-stationary sequence of step heights 

( )( , ) k nc k n Eη η η= is given by 

( ) ( ) ( ) ( )( )

( )

1
2

1

0

2
( , )

, ;

k

A A A
j

n k

A
j

k k j c j k j c n j
c k n

k c k j k n
η

σ
−

=

−

=

⎧
+ − + − +⎪

⎪= ⎨
⎪+ + <
⎪⎩

∑

∑
 

 Let us introduce a new variable 
k

k k
k

η

η η
ζ

σ
−

=  with 

( ) 0kE ζ =  and ( )2 1kE ζ =  . It can be shown that kζ  
converges in distribution to the standard normal law, i.e. 
the central limit theorem holds both with i.i.d.random [7] 
and chaotic magnitudes Ak [8].  In [3], authors have 
presented the analytical expressions for the characteristic 
functions of the chaotic partial sums kη of the magnitudes 
Ak generated by PWL onto maps and shown their fast 
convergence to the limit ( )2exp / 2ω− . 
A weak invariance principle often accompanies the central 
limit theorem in the theory of random processes and in 
that of chaotic dynamical systems. We consider a 
piecewise constant function ( )kW t  on [ ]0,1t∈ such that 

( ) k t
kW t

k

η

σ
⎢ ⎥⎣ ⎦=  ,  (13) 

where x⎢ ⎥⎣ ⎦ is the floor function (it gives the greatest 
integer less than or equal to x) 

1
2

1
(0) 2 ( )

k

A A
n

c cσ
−

=

= + ∑ n .  (14) 

Then for any k { }kW  induces a measure on the space of 
continuous functions on [0,1] . According to the  
invariance principle this measure converges weakly, as 

, to the Wiener process W  (Donsker theorem). 
Fig. 3 depicts examples of funct  {
k →∞

ions }kW for different k 
when the magnitudes Ak are chaotic variables generated 
by a tent map on [-1,1]:  

1 1 2 , 1,2,...n nA A n+ = − =  
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Fig. 3 Three realizations of the process W for k=100,300 
and 10000 (red, green and blue line) 
 
The weak invariance principle known also as the 
functional central limit theorem provides an 
approximation deterministic dynamical systems by a 
Brownian motion on large space and time scales. In 
statistical physics such a time-space rescaling often means 
the transition from the microscopic time scale to the 
macroscopic one. As a result, a completely deterministic 
model will asymptotically behave as a Brownian motion.  
Thus the distribution of η(t) tends to the Gaussian law 
with the mean (8) and variance (9).  
This confirms the diffusion character of η(t). It follows 
that the Eq.  (6) (or (1) with a shot noise forcing function ) 
can be used for stochastic and chaotic modeling of the 
Wiener process. 

 
3.1.2. Power spectral density 
 

Due to (6) the power spectrum of the process η(t) is 
related to the psd of the impulse process ξ(t) by 

2

( )
( )

S
S ξ
η

ω
ω

ω
= ,  (15) 

where Sξ(ω) is defined in [3,4] by  
2

1

2( ) ( ) Re ( )

1 ( ) ( )

A
A k

k

A k
k

S c k
T T

c k
T

ξ
σ

ω ω

ω

∞

=

∞

=−∞

= + ⋅ Θ

= ⋅ ⋅Θ

∑

∑
. (16) 

Here ((( ) expk E j ))kω ωτΘ = is the characteristic 

function of the arrival times kτ , A  and T  are the mean 
values of the magnitudes and inter-arrival times, 
respectively. 

 
 

3.2. Examples  
 

3.2.1.Chaotic shot noise forcing  
 
We first consider a situation where both the magnitudes 

and the inter-arrival times are generated by chaotic maps.  
Let Ak be generated by a Bernoulli map defined by  

2 1, 1 0
( )

2 1, 0 1
x x

x
x x

φ
+ − ≤ <⎧

= ⎨ − ≤ <⎩
. 

In this case { }kA  is stationary with uniform probabilistic 
measure and a acf of the form (12) with  r = ½.  
Let the inter-arrival times {Tk} be a chaotic sequence 
generated by the tent map over the interval (0,1).   
The expression for the characteristic function Θk(ω)  of 
the arrival time τk when the intervals are generated by a 
tent map is given by  

12
( , )

11 1
1

1( ) ( 2 1)
2 2

k

i f k j
k k k

j
e ω ωω

−

− −
=

⎛ ⎞Θ = Θ −⎜ ⎟
⎝ ⎠

∑ j , (17) 

where 
2

1

2 2

2 1( 1, ) , 1, 2,..., 2
( , ) 2

( 1, 2 ), 2 1,..., 2

k
k

k k

jf k j for j
f k j

f k j for j

−
−

1k− − −

−⎧ − + =⎪= ⎨
⎪ − − = +⎩

 

with f(2,1)=1, f(2,2)=0 and  1 ( ) ( 1) /ie iωω ωΘ = − . 
We are thus in the position to obtain both the psd of the 
shot noise process using the formula (16) and the psd of 
the process η(t) from (15). Thesefunctions are depicted in 
the Fig. 4 and Fig. 5, respectively. 

 
Fig. 4  PSD of the chaotic shot noise  

 
 

 
Fig. 5  PSD of the response to the chaotic shot noise 

forcing  
 

 
3.2.2. Poisson shot noise forcing  

 
Let the forcing signal  be a weakly correlated 

random/chaotic Poisson shot noise ξ(t). We introduce the 
following acf of the magnitudes Ak   
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2 2 , (1) , ( ) 0, 2A A Ac c k kσ σ σ= = − = ∀ ≥  (18) 
which simplifies (16). We calculate a characteristic 
function of the arrival times τk  at lag 1 using the 
exponentially distributed inter-intervals Tk: 

( ) y
Tp y e αα −= . Then we get  

( ) ( )1 2 20
Re ( ) cos xx e dxα αω α ω

ω α
∞ −Θ = =

+∫  (19) 

Eqs. (18) and (19) substituted into (16) and (15) give  

 2 2

2( )Sη
ασω

ω α
=

+
  (20) 

Notice that the chaotic case the exponentially distributed 
interarrival times Tk  and the magnitudes Ak with the acf 
(18) can be generated by maps (4) and (5),respectively. 
Design of such chaotic maps can be done by use the 
inverse methods [e.g. 5]. The following map is one of the 
solutions of this inverse problem:   

( )
( )

( )

1 ln 2 1 , 0

1 lln 1 2 ,

x

x

e x
x

e x

α

α

αϕ

α α

−

−

⎧− − < <⎪⎪= ⎨
⎪− − >
⎪⎩

ln 2

n 2
α  (Fig. 6) 
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Fig. 6 A map with an exponential distribution 
 

Thus a solution η(t) of the differential equation (1) 
forced by a weakly correlated random/chaotic Poisson 
shot noise ξ(t) is characterized by Gaussian distribution 
and  Lorentzian type of  power spectrum and can be used 
e.g. for a  phase noise modeling in communication 
systems. 

 
4. Conclusions 

 
In this work we studied a dynamical system described 

by Eq. (1) subjected to a forcing in the form of a 
deterministic or a random impulse process, and shown 
that under generic conditions the response satisfies the 
central limit theorem.  

The main characteristic of Eq. (1) is the absence of drift 
term in the right hand side. An obvious realization of this 
situation is that of  phase variables. In this respect it is 
expected that our results will be of interest in electronic 
circuits and communication systems. It would 
nevertheless be desirable to extend the analysis in order to 
account for a non-trivial intrinsic dynamics in the form of 
e.g. a linear drift or of nonlinear cooperative processes 

leading to a generalized Langevin-type equation of the 
form  
 

( ) ( )d f
dt
η tη ξ= +   (21) 

It is likely that the case of a linear function f(η) (cf. Eq. 
(2)) will be amenable to a comprehensive analytic study, 
leading to expressions for the power spectrum and the 
probability density function of the response. On the other 
hand the conditions of validity of a central limit type 
theorem are now expected to be much more stringent at 
least when the forcing is of deterministic origin, since the 
probability density of such a forcing is typically both non-
Gaussian and has a finite support.  

Finally, it would be of interest to address the inverse 
problem of modeling a process described by a time series 
displaying some well-defined statistical properties, by a 
Langevin-type of equation of the form of (21). The issue 
here would be to design f(η) and the forcing ξ(t) in such a 
way that these statistical properties are satisfied. Work in 
both directions is in progress. 
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