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Abstract—The present study investigates the sta-
bility of amplitude death in a delayed coupled oscilla-
tor network on a cubic graph. The oscillator network
on the cubic graph is constructed using the Cartesian
product of three sub-networks, with path graph topol-
ogy comprising two nodes. As the sub-networks have
different connection delays, the connection delays of
the oscillator network are not identical. Although such
an oscillator network is difficult to be analyzed, the
property of the Cartesian product allows the simple
analysis of stability. The analytical results are con-
firmed via numerical simulations.

1. Introduction

Amplitude death, which is the stabilization of an un-
stable equilibrium point in coupled oscillators1, is in-
duced by diffusive interactions between oscillators [2].
It has been confirmed that amplitude death never oc-
curs in diffusively coupled identical oscillators [3], [4].
However, in 1998 Reddy et al. found that a connec-
tion delay can cause amplitude death even in identical
coupled oscillators [5], [6]. Amplitude death by de-
lay has attracted considerable attention not only in
the academic field but also in the field of engineering
such as DC micro grids [7, 8]. Most of the previous
studies on amplitude death assume that all connec-
tion delays between oscillators are identical in the en-
tire network [9–15], even though there are many real
networks with non-identical delays. This is because it
is difficult to analyze the stability of amplitude death
in networks with non-identical connection delays.

To investigate amplitude death in networks with
non-identical connection delays, our previous study
dealt with Cartesian product networks of two sub-
networks, where each sub-network had different con-
nection delays (see Fig. 1(a)) [16]. As a result, the
Cartesian product network contained two different
connection delays. As mentioned above, the stability
of such network is difficult to be analyzed. However,
the properties of the Cartesian product [17, 18] allow
a simple analysis of stability. Our previous study re-

1Amplitude and oscillation death are different phenomena
[1].

vealed that there is a suitable difference between the
two connection delays in the two sub-networks to in-
duce amplitude death for the long connection delays.
However, the networks analyzed in our previous study
contained only two different connection delays.

In this study, we investigate amplitude death in a
network on a cubic graph with three different con-
nected delays (see Fig. 1(b)), based on our previous
study [16]. The network on the cubic graph is con-
structed using the Cartesian product of three sub-
networks, with path graph topology containing two
nodes. The property of the Cartesian product enables
the simple determination of the stability region. The
analytical results are confirmed via numerical simula-
tions.

2. Delayed coupled oscillators on a cubic graph

Let us consider delayed coupled oscillators on a cu-
bic graph (see Fig. 1), which is constructed by the fol-
lowing three steps: (i) prepare three sub-networks G1,
G2, and G3 with path graph topology with two nodes;
(ii) construct a Cartesian product network G12G2 from
G1 and G2 (see Fig. 1(a)); (iii) construct a Cartesian
product network (G12G2)2G3 from G12G2 and G3 (see
Fig. 1(b)). The connection delays in the Cartesian
product network (G12G2)2G3 are not identical, as sub-
networks G1, G2, and G3 has different connection delays
τ1, τ2, and τ3 (see Fig. 1(b)).

Note that the adjacency matrix of sub-networks G1,
G2, and G3 is given by

AG =
[
0 1
1 0

]
. (1)

Hence, the adjacency matrices of G12G2 and
(G12G2)2G3 can be written as

AG12G2 = AG ⊗ I2 + I2 ⊗ AG, (2)

A(G12G2)2G3 = AG12G2 ⊗ I2 + I4 ⊗ AG

= AG ⊗ I4 + I2 ⊗ AG ⊗ I2 + I4 ⊗ AG,

where symbol ⊗ and Im denotes the Kronecker prod-
uct and m-dimensional identity matrix, respectively.
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(a) Cartesian product network G12G2

(b) Cartesian product network (G12G2)2G3

Figure 1: Schematics of the delayed coupled oscilla-
tors on a cubic graph (G12G2)2G3. Sub-networks G1,
G2, and G3 contain connection delays τ1, τ2, and τ3,
respectively. All the sub-networks G1, G2, and G3 are
path graphs with two nodes.

The present study considers the delay-coupled
Stuart-Landau oscillators on the cubic graph,

Żi(t) = (µ + jω − |Zi(t)|2)Zi(t)

+ u
(1)
i (t) + u

(2)
i (t) + u

(3)
i (t), (3)

where i = 1, . . . , 8 and Zi(t) ∈ C is the state vari-
able of i-th oscillator. The imaginary unit is defined
as j :=

√
−1. Parameters µ > 0 and ω > 0 represent

the instability and the natural frequency of the equi-
librium point Z∗

i = 0, respectively. Each oscillator
receives input signals u

(1)
i (t), u

(2)
i (t), and u

(3)
i (t) from

subnetworks G1, G2, and G3, respectively:

u
(1)
i (t) = k

{ 8∑
l=1

c
(1)
i,l Zl(t − τ1) − Zi(t)

}
,

u
(2)
i (t) = k

{ 8∑
l=1

c
(2)
i,l Zl(t − τ2) − Zi(t)

}
,

u
(3)
i (t) = k

{ 8∑
l=1

c
(3)
i,l Zl(t − τ3) − Zi(t)

}
, (4)

where k is the coupling strength. τ1, τ2, and τ3 denote
the connection delays in subnetworks G1, G2, and G3,
respectively. c

(1)
i,l , c

(2)
i,l , and c

(3)
i,l represent the (i, l) ele-

ment of adjacency matrices AG ⊗ I4, I2 ⊗ AG ⊗ I2,

and I4 ⊗ AG in Eq. (2), respectively: c
(1)
i,l = 1 and

(c(2)
i,l = 1, c

(3)
i,l = 1) if the i-th and l-th oscillators are

connected, otherwise c
(1)
i,l = 0 and (c(2)

i,l = 0, c
(3)
i,l = 0).

The coupled oscillators (3), (4) have a homogeneous
steady state

[Z∗
1 , · · · , Z∗

8 ]T = [0, · · · , 0]T . (5)

3. Stability analysis

The dynamics around the steady state in Eq. (5) is
given by

żi(t) = (µ + jω − 3k)zi(t) + k
8∑

l=1

c
(1)
i,l zl(t − τ1)

+ k
8∑

l=1

c
(2)
i,l zl(t − τ2)

+ k
8∑

l=1

c
(3)
i,l zl(t − τ3),

(6)

where zi(t) := Zi(t) − Z∗
i is a perturbation from the

equilibrium point. The linear system in Eq. (6) can be
rewritten as

Ẋ(t) = (µ + jω − 3k)X (t) +k(AG ⊗ I4)X(t − τ1)
+ k(I2 ⊗ AG ⊗ I2)X(t − τ2)
+ k(I4 ⊗ AG)X(t − τ3),

(7)

where X(t) := [z1(t), · · · , z8(t)]T . The stability of the
linear system in Eq. (7) is determined by the roots of
the following characteristic equation,

G(s) = det[(s − µ − jω + 3k)I8 − k(AG ⊗ I4)e−sτ1

− k(I2 ⊗ AG ⊗ I2)e−sτ2

− k(I4 ⊗ AG)e−sτ3 ]. (8)

As matrix AG is a real symmetric matrix, it can be
diagonalized as follows:

T −1AGT =
[
1 0
0 −1

]
= diag(1, −1), (9)

where T is a transformation matrix. Thus, character-
istic Eq. (8) can be diagonalized by using the transfor-
mation matrix (T ⊗ T ⊗ T ) as follows:

G(s) = det[(T −1 ⊗ T −1 ⊗ T −1)
{(s − µ − jω + 3k)I8 − k{(AG ⊗ I4)e−sτ1

+ (I2 ⊗ AG ⊗ I2)e−sτ2

+ (I4 ⊗ AG)e−sτ3}}
(T ⊗ T ⊗ T )]
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= det[(s − µ−jω + 3k)I8

− k{(diag(1, −1) ⊗ I4)e−sτ1

+ (I2 ⊗ diag(1, −1) ⊗ I2)e−sτ2

+ (I4 ⊗ diag(1, −1))e−sτ3}].
(10)

Consequently, characteristic Eq. (10) can be divided
into eight modes,

G(s) =
2∏

p=1

[ 2∏
q=1

{ 2∏
r=1

g(s, ρp, σq, ϕr)
}]

,

g(s, ρ, σ, ϕ) := s − µ − jω + 3k

− k(ρe−sτ1 + σe−sτ2 + ϕe−sτ3),
(11)

where ρ1 = σ1 = ϕ1 = 1 and ρ2 = σ2 = ϕ2 = −1. The
steady state in Eq. (5) is stable if and only if all the
roots of eight modes in Eq. (11) stay on the left-half
of the complex plane.

To determine the marginal stability curves and the
stability region, we consider a root on the imaginary
axis (i.e., s = jλ, λ ∈ R). Substituting s = jλ into
g(s, ρ, σ, ϕ) = 0, we can obtain its real and imaginary
parts:

−µ + 3k−k{ρ cos(λτ1)+σ cos(λτ2)+ϕ cos(λτ3)} = 0,

λ − ω + k{ρ sin(λτ1) + σ sin(λτ2) + ϕ sin(λτ3)} = 0.

(12)

The marginal stability curves on the (τ1, τ2) space are
calculated employing the following numerical proce-
dures [11]: set values for τ1 and τ3, solve Eq. (12) with
respect to τ2 and λ numerically2, change the value of
τ1, and return to the first step.

4. Numerical example

Let us draw the marginal stability curves and the
stability region on the connection parameter (τ1, τ2)
space. The parameters of the oscillators are fixed at

µ = 0.5, ω = 2π, (13)

and the coupling strength is set to k = 1.5 [16].
Figure 2 shows the marginal stability curves (black

curves) and the stability regions (gray areas) for τ3 =
0, 0.5, 1.0, 1.5. The marginal stability curves are the
solutions for g(jλ, ρ, σ, ϕ) = 0 (i.e., Eq. (12)), on which
at least one root of g(s, ρ, σ, ϕ) = 0 stays on the imagi-
nary axis. Thus, if a parameter set (τ1, τ2) crosses the
marginal stability curve, one root of g(s, ρ, σ, ϕ) = 0

2In the present study, we use fsolve in MATLAB for numer-
ical calculation.
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Figure 2: Stability region on the connection parameter
(τ1, τ2). Black curves and the gray areas indicate the
marginal stability curves and the stability regions for
Cartesian product network (G12G2)2G3, respectively,
illustrated in Fig. 1 (µ = 0.5, ω = 2π).

crosses the imaginary axis. In the stability region, all
roots of g(s, ρ, σ, ϕ, ) = 0 stay on the left-half of the
complex plane, while in the white areas, at least one
root stays on the right-half of the complex plane.

It can be seen that the stability region strongly
depends on the connection delay τ3, for instance,
Fig. 2(a) has a narrow region, while Fig. 2(c) has a
wide region. However, regardless of the different con-
nection delays τ3, all stability regions in Figs. 2(a)-(d)
contain two common white dotted lines: a vertical and
a diagonal line. The vertical dotted lines imply that
amplitude death can be induced for arbitrarily long
τ2 and τ3 if τ1 is fixed at an appropriate value (i.e.,
τ1 = 0.25). The diagonal dotted lines imply that am-
plitude death can be induced for arbitrarily long τ3 if
there is an appropriate difference between τ1 and τ2
(i.e., τ2 = τ1 − 0.25). Stability regions on the (τ1, τ2)
space were checked with τ3 = 0, 0.5, 1.0, 1.5, 2.0, 5.0, 10
and we have confirmed that the white dotted line is
commonly observed for all τ3. It should be noticed
that a long connection delay never induce amplitude
death if the connection delays are identical in the
whole network (i.e., τ1 = τ2 = τ3) [5]. These results
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(a) point A: (τ1, τ2) = (0.2, 1.0)

(b) point B: (τ1, τ2) = (1.4, 1.4)

Figure 3: Time-series date at points A and B in
Fig. 2(c)

.

imply that there is a suitable difference between cou-
pling delays in the sub-networks to induce amplitude
death for long coupling delays.

Figure 3 shows the time-series date of the state vari-
ables Re[Zi(t)] at points A: (τ1, τ2) = (0.2, 1.0) and B:
(τ1, τ2) = (1.4, 1.4) in Fig. 2(c). All the oscillators are
independent until t = 20. At t = 20, they become
coupled. At point A, after coupling, all the variables
converge to the equilibrium point (amplitude death).
At point B, the variables still oscillate.

5. Conclusion

This study investigated amplitude death in a de-
layed coupled oscillator network on a cubic graph. Al-
though the oscillator network had three different de-
lays, the property of Cartesian product allowed us to
simply determine the stability region. Our analytical
results were confirmed by numerical simulations.
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