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Abstract— In 2011, Senthilnath et al. proposed to uti-
lize the Firefly Algorithm for K-means clustering. The
algorithm has shown better results than the standard K-
means algorithm or other combinations with bio-inspired
optimization heuristics. In this study, we propose a further
improvement of the method, based on an improved fire-
fly algorithm. As a key aspect, the randomization parame-
ter in our proposed algorithm is changed when the assign-
ment does not change. We compare the standard K-means
algorithm, K-means using the conventional Firefly Algo-
rithm and our proposed algorithm on the basis of a sim-
ple data distribution. Numerical experiments show that our
proposed algorithm is more efficient than the other algo-
rithms.

1. Introduction

Clustering is a popular data analysis technique used for
data analysis, image analysis, data mining and the other
fields of science and engineering. The goal of clustering
is to find homogeneous groups of data points in a data set.
Each group is called a cluster and is characterized by the
fact that objects that belong to the same group are more
similar than objects that belong to different groups. The
K-means algorithm is one of the most famous clustering
methods. It is used if the number of clusters is known and
the clusters tend to be spherical. The goal of the method is
to find K cluster centers and assign each object to the clos-
est cluster center such that the sum of the squared distances
between the objects and the corresponding cluster centers
is minimal. This means that the K-means clustering prob-
lem is an optimization problem.

Senthilnath et al. proposed an algorithm that used the
firefly algorithm for K-means clustering (KMFA) [1]. Nu-
merical experiments have indicated that this algorithm is
more efficient algorithm than the standard algorithm or
other optimization heuristics. The Firefly Algorithm (FA)
has been proposed by Yang in 2007 and is based on the
idealized behavior of the flashing characteristics of fire-
flies [2]. FA is an efficient optimization algorithm because
it has a deterministic component and a random component.

Almost all algorithms having only the deterministic com-
ponent are local search algorithms, for which there is a risk
of being trapped in a local optimum. However, the random
component makes it possible to escape from such a local
optimum.

In our previous study, we proposed a new clustering al-
gorithm that combines K-means clustering and improved
Firefly Algorithm (KMIFA). In our proposed algorithm,
one parameter is changed when the assignment does not
change [4]. We compared the conventional K-means algo-
rithm, KMFA and our proposed algorithm KMIFA using
a 2-dimensional toy data model. These experiments in-
dicated that our algorithm is more efficient than the other
algorithms. However, for 3-dimensional toy data model
this algorithm cannot obtain a better results than other al-
gorithms. We improved the transition rule of one parame-
ter [5]. Our proposed algorithm has new two parameters. In
the previous studies, we carried out computer simulations
with fixed parameters. Therefore, in this study, we simulate
a various patterns of this two parameters and intestate their
effects.

2. The Conventional Methods

In this section, we explain the conventional K-means al-
gorithm and the Firefly Algorithm (FA).

2.1. K-means algorithm

The objective function of K-means clustering is defined
by

J =
K∑

k=1

N∑
n=1

bkn|ck − on|2, (1)

where K is the number of cluster centers, N is the number
of objects, ck is the position vector of cluster center k and
on is the position vector of object n. Each object is assigned
to its nearest center. Hence bkn = 1 if object n is assigned- 576 -
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Algorithm 1 The conventional Firefly Algorithm
Objective function f (x), x = (x1, ..., xd)T

Initialize a population of fireflies xi(i = 1, 2, ..., n)
while t < MaxGeneration do

for i = 1 to n, all n fireflies do
for j = 1 to n, all n fireflies do

Light intensity Ii at xi is determined by f (xi)
if Ii > I j then

Move firefly i towards j in all d dimensions
end if
Attractiveness varies with distance r via
exp[−γr]
Evaluate new solutions and update light intensity

end for j
end fori
Rank the fireflies and find the current best

end while
Postprocess results and visualization

to center k and bkn = 0 otherwise:

bkn =

1, ob ject n is assigned to center k
0, otherwise.

(2)

This optimization problem is solved using the K-means
algorithm which is composed of the following four steps:

1. Initialize all cluster centers and objects: The number
of cluster centers and all objects are predefined. All
cluster centers are randomly initialized in the search
space.

2. Assignments: Each object is assigned to only the clos-
est cluster center.

3. Calculates cluster centers: The places of each cluster
center move to the mean of each group object.

4. Iterate steps 2 and 3 until the assignments no longer
change.

2.2. The Conventional Firefly Algorithm (FA)

FA has been developed by Yang and it was based on
the idealized behavior of the flashing characteristics of fire-
flies [2]. The conventional FA idealizes these flashing char-
acteristics using the following three rules:

• All fireflies are unisex so that one firefly is attracted to
other fireflies regardless of their sex.

• Attractiveness is proportional to brightness; thus, for
any two flashing fireflies, the less brighter one will
move towards the brighter one. Both the attractiveness
and brightness stared above decrease as their distance
increases. If no one is brighter than a particular firefly,
it moves randomly.

• The brightness or light intensity of a firefly is affected
or determined by the landscape of the objective func-
tion to be optimized.

The attractiveness of a firefly β is defined by

β = (β0 − βmin)e−γr
2
i j + βmin, (3)

γ =
1
√

L
, (4)

L =
|Xmax − Xmin|

2
, (5)

where γ is the light absorption coefficient, βmin is the min-
imum value of β, β0 is the attractiveness at ri j = 0, and ri j

is the Euclidian distance between any two fireflies i and j
at xi and x j. L means the average scale for the problem.
The movement of the firefly i is attracted to another more
attractive firefly j, and is determined by

xi = xi + β(x j − xi) + αϵ i, (6)
ϵ i = (random() − 0.5)L, (7)

where xi is the position vector of firefly i, random() is a
uniform random number distributed in [0, 1] and α(t) is the
randomization parameter. The parameter α(t) is defined by

α(t) = α(0)
(

10−4

0.9

)t/tmax

, (8)

where t is the number of iteration.
Algorithm 1 shows the pseudo code of the conventional

FA for minimum optimization problems.

3. K-Means Clustering with FA (KMFA)

For KMFA, the position vector xi of a firefly i corre-
sponds to (c1, c2, ..., cK). That is, each firefly contains the
positions of all cluster centers. The attractiveness of each
firefly is defined by the objective function (Eq. (7)). Nu-
merical experiments have indicated that this algorithm is
more efficient than the K-means algorithm and other algo-
rithms for typical benchmark data sets [1].

4. K-means Clustering using the Improved FA
(KMIFA)

The K-means algorithm and KMFA sometimes converge
to a local minimum. Therefore, the purpose of this study
is to remove this disadvantage. In our proposed algorithm,
each firefly has its own value of α(t):

α(t) = λi

(
10−4

0.9

)t/tmax

, (9)

where λ is a new parameter. We set all value of λ to the
same certain value λ0 when initializing the population of
fireflies and define the minimum value of λ is 0. We do not- 577 -



Table 1: Information about data toy model used
cluter ideal center object number ball of radius

1 (50, 50, 70) 50 15
2 (20, 20, 40) 30 10
3 (20, 80, 40) 30 10
4 (80, 20, 40) 30 10
5 (80, 80, 40) 30 10
6 (50, 50, 40) 20 5

define the maximum value of λ, which means λ could in-
crease to infinity. The value of λ changes if the assignment
changes or not.

λnew
i =

λi − θ1, the assignment doesn′t change
λi + θ2, the assignment changes

(10)

where θ1 and θ2 are a predefined parameter. In the case of a
firefly i, if the assignment of all objects does not change, the
value of λi decreases. On the other hand, if the assignment
of all objects changes, the value of λi increases. In the
case of λ >> 0, a firefly moves with a relatively strong
random influence. This makes the firefly easier to escape
from a local minimum. In the case of λ = 0.0, a firefly does
not move randomly, which leads to a faster convergence.
Therefore, the concept of our proposed algorithm is at the
beginning of the search, fireflies easily escape from local
optima. Then, as the number of iteration increases, fireflies
tend to converge.

5. Numerical Experiments

We compare the conventional K-means algorithm,
KMFA and two transition patterns our KMIFA using a sim-
ple data toy model. Information about that model is sum-
marized in Tab. 1 and that model is depicted in Fig. 1. The
number of dimensions is 3, the range of each dimension is
[0, 100], the number of clusters is 6 and the number of total
objects is 190. The data objects were generated randomly
around the ideal centers within each ball of radius. We used
all the same data set in each numerical experiment. Each
numerical experiment was run 500 times and we compared
the success rate of each algorithm, where the success rate
is defined as the fraction of objects that are assigned to the
correct cluster:

S uccess Rate[%] =
S uccess T imes[times]

500
× 100.(11)

Figure 2 shows the numerical experiment results in the
case of θ1 = 0.1 and θ2 = 0.1. We assume that our pro-
posed algorithm is more efficient algorithm than the other
two algorithms. For our proposed algorithm, the success
rates are almost same as those of KMFA when λ0 is more
than 1.5. As λ0 decreasing from 1.5, the success rates of
our proposed algorithm are gradually increasing. On the

(a) x vs y

(b) x vs z

(c) y vs z

Figure 1: Data toy model used.

other hand, As λ0 decreasing from 1.5, the success rates of
KMFA remind flat to 0.5, then, those rapidly decrease.

Figure 3 shows the transition of λ when λ0 is 0.0. Each
line means the value of λ of each firefly. The transition is
like a mountain. Until the number of iterations is about 30,
λ of all fireflies increase. From the number of iterations is
about 60, λ of all fireflies decrease.

Next, we focus on the rule of changing λ. Figure 4 shows
the numerical experiment results in the case θ1 is fixed at
0.1 and θ2 is 0 and 0.1. We assume the algorithm having
only decrease operation cannot obtain good result.

Next, we change the value of θ1 and θ2. First, we fix the
value of θ1 at 0.1 and change θ2 from 0.1 to 0.3 (see Fig. 5).
Figure 5 shows the value of θ2 is suitable for our proposed
algorithm. The graph of our proposed algorithms gradually
increase with the same slope. However, as the value of θ2
increasing, the success rate decreases.

Then, we fix the value of θ2 at 0.1 and change θ1 from
0.1 to 0.3 (see Fig. 6). We assume that the success rate does
not depend on the value of θ2.- 578 -



Figure 2: Numerical experiment result.

Figure 3: The tradition of λ0 = 0.0.

6. Conclusion

In this study, we have proposed a new clustering al-
gorithm that utilizes an improved firefly algorithm for K-
means clustering. Our algorithm is based on the idea that
the randomization parameter is changed when the assign-
ment changes or not. In our proposed algorithm, at the
beginning of the search, all fireflies move with a relatively
strong random influence. Hence they can more easily es-
cape from a local minimum. As the number of iterations
increases, the firefly tend to converge. Numerical experi-
ments have indicated that our proposed algorithm is more
efficient than the other algorithms.

The study is based on a relatively simple toy data set. In
our future work, we will study more complex problems. In
addition, we will study more various transition.

Figure 4: Numerical experiment result only decrease oper-
ation.

Figure 5: Numerical experiment result changing θ2.

Figure 6: Numerical experiment result changing θ1.
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