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Abstract—This study analyzes the quasiperi-
odic bifurcation phenomena of two-coupled piecewise-
constant hysteresis oscillator driven by a rectangu-
lar wave force and three-coupled piecewise-constant
hysteresis oscillator. These oscillators can gener-
ate three-dimensional tori. By using a generalized
calculation algorithm for deriving Jacobian matri-
ces in piecewise-constant hysteresis systems, we con-
duct two-parameter Lyapunov diagrams for both non-
autonomous two-dimensional system and autonomous
three-dimensional system. According to the numer-
ical results, Arnol’d resonance web and the hystere-
sis phenomenon is observed. The hysteresis dis-
torts the Chenciner bubbles in non-autonomous two-
dimensional system, however, we cannot observe such
phenomenon in the autonomous three-dimensional
system.

1. Introduction

In two-dimensional tori-generating systems such as
coupled oscillators or forced oscillators, we can observe
infinitely many synchronization regions; these regions
are well known as Arnol’d tongues. Wherein, periodic
solution-generating regions exist in two-dimensional
tori-generating regions. However, in three-dimensional
tori-generating systems show more complex bifurca-
tion structures. Two-dimensional tori-generating re-
gions exist in three-dimensional tori-generating re-
gions. These partial synchronization regions extend
in a numerous of directions like a “cobweb” in dynam-
ics’ parameter spaces, which called Arnol’d resonance
web. Furthermore, complete synchronization regions
of three-dimensional tori are found in two-dimensional
tori-generating regions. Such complete synchroniza-
tion regions and partial synchronization regions were
proposed by Linsay and Cumming in Ref [1]. Many re-
searchers have attracted attention to these quasiperi-
odic bifurcation structures in both discrete-time dy-
namics [2] and continuous-time dynamics [3, 4].

To analyze bifurcation structures in continuous-time
dynamics more precisely, Tsubone et al. proposed and
analyzed the fundamental of piecewise-constant hys-
teresis oscillator driven by a rectangular wave force [5].
Because vector fields of piecewise-constant hysteresis
oscillator take only constant values piecewisely, it is
relatively easy to perform rigorous analysis. Hence,
using the same computational cost similar to that of
discrete-time dynamics, Inaba et al. succeed in ob-
serving Arnol’d resonance webs with high resolution
in a driven piecewise-constant hysteresis oscillators [4].
Subsequently, we analyzed this circuit in detail by de-
riving Jacobian matrices in a systematic procedure [6].

In this study, we analyze the quasiperiodic bifur-
cation phenomena in two-coupled piecewise-constant
hysteresis oscillator driven by a rectangular wave force
and three-coupled piecewise-constant hysteresis oscil-
lator. The calculation algorithm for deriving ex-
plicit solutions and the Jacobian matrix in piecewise-
constant hysteresis oscillators can be applicable in
both these systems. By using this algorithm, the
Lyapunov exponents are performed with a precision
similar to that of maps. Thus, two-parameter Lya-
punov diagrams are easily conducted. The numer-
ical experiments show that Arnol’d resonance web
and the hysteresis phenomenon is observed in both
non-autonomous system and autonomous system of
piecewise-constant hysteresis oscillator. Furthermore,
the hysteresis phenomenon erodes the Chenciner bub-
bles in non-autonomous system.

2. Coupled piecewise-constant hysteresis oscil-
lators

Figure 1(a) presents the fundamental of piecewise-
constant hysteresis oscillator without the forcing term
that comprises of a capacitor and hysteresis element.
The circuit equation is represented by

C
dv

dt
= H(v). (1)
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(a) (b)

Figure 1: Piecewise-constant hysteresis oscillator. (a)
Circuit diagram. (b) v − i characteristics of the hys-
teresis element.

(a)

(b)

Figure 2: Coupled piecewise-constant hysteresis oscil-
lators. (a) Two-coupled piecewise-constant hysteresis
oscillator driven by a rectangular wave. (b) Three-
coupled piecewise-constant hysteresis oscillator.

The v − i characteristic of the hysteresis element is
shown in Fig. 1(b). If the solution is on the upper
branch of H(v) = Ih, v is increasing. When it reaches
v = Vth the solution jumps to the lower branch of
H(v) = −Ih. In addition, the solution on the lower
branch jumps to the upper branch when v decreases
and reaches v = −Vth.

In this study, we consider the two-coupled non-
autonomous piecewise-constant hysteresis circuit and
three-coupled autonomous piecewise-constant hystere-
sis circuit as shown in Fig. 2(a) and Fig. 2(b), re-
spectively. The two-coupled non-autonomous circuit
comprises two fundamental of piecewise-constant hys-
teresis oscillators, which are connected by a capaci-
tor Ca, and a rectangular wave current source I1(t).
The voltage across two capacitors C1 and C2 are v1,
v2, respectively. H1(v1) and H2(v2) are the two hys-
teresis elements, of which characteristics behave in
the same manner in Fig. 1(b). The waveform of the

Figure 3: Rectangular wave.

rectangular wave source with amplitude I and period
2T0 is shown in Fig. 3. In the similar settings, the
three-coupled autonomous circuit comprises three fun-
damental of piecewise-constant hysteresis oscillators.
These three-coupled circuits are connected by two ca-
pacitors Ca and Cb. The voltages across three capac-
itors C1, C2, and C3 are v1, v2, and v3, respectively.
H1(v1), H2(v2), and H3(v3) are the three hysteresis
elements.

The circuit dynamics of the two-coupled non-
autonomous system is described by

ẋ = kx = D3h1(x) +D1h2(y) + S(τ),
ẏ = ky = D2h1(x) +D2D4

(
D1h2(y) + S(τ)

)
.

(2)

where “·” denotes the derivative of τ and the following
dimensionless variables and parameters are used.

v1 = Vth1x, v2 = Vth2y, t = γτ,
h1(x)Ih1 = H1(Vth1x), h2(y)Ih2 = H2(Vth2y),

γ =
Vth1(C1C2 + C1Ca + C2Ca)

Ih1Ca
,

Ih2
Ih1

= D1,
Vth1
Vth2

= D2,
I

Ih1
= B,

C2 + Ca

Ca
= D3,

C1 + Ca

Ca
= D4,

T0
γ

= T.

(3)

The normalized hysteresis loops are h1(x) and h2(y).
Periodic external force S(τ) is expressed as follow.

S(τ) =

{
B for nT ≤ τ < (n+ 1)T,
−B for (n+ 1)T ≤ τ < (n+ 2)T,

(4)

where n is integer. B and T is the amplitude
and half-periodic of the rectangular wave, respec-
tively. The circuit dynamics include six parameters
D1, D2, D3, D4, B, and T . In the same procedure,
the normalized equations for the three-coupled au-
tonomous circuit is represented by

ẋ = kx = (D5 +D5D6 − 1)h1(x) +D1D6h2(y)
+D3h3(z),

ẏ = ky = D2D6h1(x) +D1D2D5D6h2(y)
+D2D3D5h3(z),

ż = kz = D4h1(x) +D1D4D5h2(y)
+D3D4(D6 +D5D6 − 1)h3(z).
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The circuit dynamics include six parameters
D1, D2, D3, D4, D5, and D6. Normalized param-
eters are expressed as follows.

Ih2
Ih1

= D1,
Vth1
Vth2

= D2,
Ih3
Ih1

= D3,
Vth1
Vth3

= D4,

Ca + C

Ca
= D5,

Cb + C

Cb
= D6.

(6)

3. Derivation of Lyapunov exponents in a
piecewise-constant hysteresis oscillator

In this section, we explain the procedure for deriving
the Lyapunov exponents by introducing the explicit
expression of the solution. To make it easy to conduct
rigorous solutions in non-autonomous system, we as-
sume τ in Eq. (2) as a variable. Hence, we can rewrite
Eq. (2) in the autonomous form as follows.

ẋ = kx = D3h(x) +D1h(y) + S(τ),
ẏ = ky = D2h(x) +D2D4

(
D1h(y) + S(τ)

)
,

τ̇ = kz = 1.
(7)

We consider the solution where the initial condition at
τ = τ0 is x0 = (x0, y0, z0)>. When the trajectory
started at τ0 hits a boundary line, i.e., either one of
x = ±1, y = ±1, or z = ±1 (τ = T or τ = 2T in
the non-autonomous system’s case) at the time τ1, the
solution of Eq. (2) and Eq. (5) is expressed as follows.

x1 = x0 + k(τ1 − τ0), (8)

where k = (kx, ky, kz)> is vector field. To conduct
the Jacobian matrix in a systematic manner, a normal
vector of the boundary line n> is introduced. By using
this normal vector, the (τ1− τ0) in Eq. (8) is obtained

τ1 − τ0 =
n>x1 − n>x0

n>k
. (9)

Note that, at the time τ1 the trajectory is on the
boundary line. If the solution hits the line x = 1 the
boundary condition is

n>x1 = D, (10)

where n> = (1, 0, 0) and D = 1. The other bound-
ary conditions can be expressed similarly and summa-
rized in Table 1. In addition, substituting Eq. (9) into
Eq. (8) yields the following equation.

x1 =

(
In −

kn>

n>k

)
x0 +

kD

n>k
, (11)

where In denotes an identity matrix.
It is clear from Eq. (11) that the local Jacobian ma-

trix A is represented by

A =
dx1

dx0
= In −

kn>

n>k
. (12)

Table 1: Vector n> and values of D.

n> D
x = 1 (1 0 0) 1
x = −1 (1 0 0) −1
y = 1 (0 1 0) 1
y = −1 (0 1 0) −1
z = 1 (0 0 1) 1
z = −1 (0 0 1) −1
τ = T (0 0 1) T
τ = 2T (0 0 1) 2T

Then, if the solution hits x = 1 or x = −1,

A0 =

 0 0 0
−ky/kx 1 0
−kz/kx 0 1

 , (13)

if the solution hits y = 1 or y = −1,

A1 =

 1 −kx/ky 0
0 0 0
0 −kz/ky 1

 , (14)

and, if the solution hits z = 1 or z = −1 (τ = T or
τ = 2T in the non-autonomous system’s case),

A2 =

 1 0 −kx/kz
0 1 −ky/kz
0 0 0

 . (15)

Note that the Jacobian matrices A0, A1, and A2 in-
clude an all zero row. Therefore, one of eigenvalues of
these matrices is zero and the corresponding minimum
Lyapunov exponent is −∞.

We use Eq. (11) and (12) to define the first and the
second Lyapunov exponent as follows.

λ1 '
1

N

M+N∑
j=M+1

ln
∣∣∣Aj

ie
j
1

∣∣∣ ,
λ1 + λ2 '

1

N

M+N∑
j=M+1

ln
∣∣∣Aj

ie
j
1 ×A

j
ie

j
2

∣∣∣, (16)

where ej1 and ej2 are orthonormal bases, and Aj
i is the

Jacobian matrix, which is one of A0, A1, and A2. M
and N are integers. It is reasonable to argue that for
M = N = 2 × 107 the two Lyapunov exponents con-
verge to zero. Therefore, Lyapunov exponent is to be
regarded as zero if the following equation is satisfied.

|λi| < 1/106. (17)

4. Arnol’d resonance web and hysteresis phe-
nomenon in coupled piecewise-constant hys-
teresis oscillators

In this section, we conduct Lyapunov analysis based
on Eq. (17). A continuous deformation method is- 594 -



(a) (b)

Figure 4: Lyapunov diagram of the non-autonomous
oscillator. (a) Bottom left. (b) Top left. (Parameter
values D2 = 1.1, D3 = D4 = 1001, and B = 0.015).

used to trace parameter. Fig. 4 and Fig. 5 show two-
parameter Lyapunov diagrams. The regions generat-
ing the periodic solutions marked in dark cyan. These
regions can be denoted as the Chenciner bubbles. Re-
gions generating two-dimensional tori (λ1 = 0, and
λ2 < 0), three-dimensional tori (λ1 = 0, and λ2 = 0),
and chaos are maked in blue, yellow, and black, respec-
tively. The Arnol’d resonance web is clearly observed.

The red arrows show the direction of the tracing
parameter in these Lyapunov diagrams. For exam-
ple, in Fig. 4(a) and Fig. 5(a), we choose initial val-
ues at the bottom left and set initial parameter values
by varying D1 (or D2, respectively) from the bottom
left to the bottom right. We trace the parameter 2T
(or D4, respectively) from the bottom to the top. In
Fig. 4(b) and Fig. 5(b), we trace the parameter 2T
(or D4, respectively) from the top to the bottom, with
the same manner indicated in Fig. 4(a) and Fig. 5(a).
As shown in these figures, the bifurcation structures
depend on the initial parameter values, and a hystere-
sis phenomenon is clearly observed. However, in the
non-autonomous circuit’s case, the hysteresis erodes
the periodic solution-generating regions. This results
suggest that the external force significantly affect the
bifurcation structures of non-autonomous systems.

5. Conclusion

We discussed the quasiperiodic bifurcation phenom-
ena of coupled piecewise-constant hysteresis oscilla-
tors. We used a generalized calculation algorithm for
the rigorous solutions in piecewise-constant hysteresis
oscillators to conduct Lyapunov analysis for both non-
autonomous system and autonomous system. Arnol’d
resonance web and the hysteresis phenomenon is ob-
served. The hysteresis distorts the Chenciner bubbles
in non-autonomous two-dimensional system. We are
interested in whether hysteresis strongly influence on
Arnol’d resonance web in higher non-autonomous sys-

(a) (b)

Figure 5: Lyapunov diagram of the autonomous oscil-
lator. (a) Bottom left. (b) Top left. (Parameter values
D1 = 1.2, D3 = 1.5, and D5 = D6 = 1001).

tem, such as three-coupled piecewise-constant hystere-
sis oscillator driven by a rectangular wave.
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