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Abstract—In this paper, we propose the local bifurca-
tion point derivation method of the one-dimensional dis-
crete dynamical systems using the particle swarm opti-
mization (PSO). First, we define the equation of the one-
dimensional discrete dynamical system and show the local
bifurcation point derivation method in that system. Next,
we apply the proposed method to the Circle map which is
a one-dimensional discrete map. Finally, we consider the
effectiveness of the proposed method using the application
result.

1. Introduction

Bifurcation phenomena occur in dynamical systems such
as electrical systems and mechanical systems [1]. Deriva-
tion of the bifurcation set in the parameter space in the elu-
cidation of the qualitative nature of these systems is stan-
dard. In mind, the engineering applications, various pe-
riodic points and the bifurcation point derivation methods
have been proposed. However, most conventional tech-
niques use of Newton’s method. Therefore, the derivation
of the differential information necessary for the calculation
is complex, and the computer implementation is compli-
cated. As an approach not using Newton’s method, Refs.
[2-5] derive the unstable periodic orbits in a chaos using
the PSO [6]. In Ref. [7], Matsushita et al. derived the in-
tersection point of the maximum power line and the period
doubling bifurcation curve in the circuit model of the boost
converter having the solar cell using the PSO. However, the
method of Ref. [7] derives a fixed point by the manual cal-
culation, so its versatility is low. Therefore, we previously
proposed a period doubling bifurcation point(PD) deriva-
tion of the one-dimensional discrete dynamical system us-
ing the PSO [8]. Then in the Ref. [9], we showed problems
and the solution method when we applied the method of
Ref. [8] to the saddle-node bifurcation(SN). In this paper,
we improve the method of Refs. [8][9]. And we show an
algorithm deriving a local bifurcation point irrespective of
the type.

2. Particle swarm optimization

2.1. Optimization problem

The optimization problem is a problem of search for x
that maximizes or minimizes a particular objective function
F. Various optimization methods have been proposed so far

F(x) ≤ C, x = (x1, · · · , xD) ∈ RD. (1)

Equation (1) is a problem of search for a suboptimal so-
lution x that minimizes the objective function F, C is a
threshold value, and RD is a search space.

2.2. PSO

The PSO is an optimization method modeling movement
of fish school and bird flock with swarm intelligence. The
PSO has multiple solution candidates called particles, and
each particle has position and velocity information. Each
particle of the particle swarm has the property of search for
an optimal solution while exchanging position information
of each particle. Since the PSO has features such as not re-
quiring gradient information by differentiation and allow-
ing change to a warping direction of the solution, the PSO
is good at problems including local solutions. Moreover,
the PSO is attracting attention because it has advantages
such as the speed of convergence, the simplicity of algo-
rithm.

Consider the PSO algorithm for finding x satisfying
the Eq. (1). The N particles move around in the D-
dimensional search space RD and search for the solution
that minimizes the objective function F. Each particle is
defined as position ai = (ai

1, a
i
2, · · · , ai

j, · · · , ai
D) and ve-

locity vi = (vi
1, v

i
2, · · · , vi

j, · · · , vi
D), where i is the particle

index, 1 ≤ i ≤ N. Each particle starts its operation at the
initial position and initial velocity given by random num-
ber in RD and 0, respectively. The update equations of the
solution are given by the following equations

vi
j(k + 1) = wvi

j(k) + ρ1(pi
j − ai

j(k)) + ρ2(g j − ai
j(k)),

ai
j(k + 1) = ai

j(k) + vi
j(k + 1).
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We define Pbest pi = (pi
1, p

i
2, · · · , pi

D) as the best posi-
tion searched by the particle i. Also, we define Gbest
g = (g1, g2, · · · , gD) as the best position among all the par-
ticles. In other words, Gbest is the provisional optimum
solution at a time k. w is a parameter called inertia weight,
ρ1 and ρ2 are random numbers in an appropriate range, and
k is a discrete time corresponding to the number of itera-
tions. The particle swarm continues the search until it sat-
isfies F(g) < C or until it reaches the iteration limit. Also,
Pbest and Gbest are updated with iteration.

3. Local bifurcation point derivation algorithm

Consider the next one-dimensional map

xn+1 = f (xn, λ). (3)

f ∈ R is endomorphism, xn ∈ R is the state variables,
λ =

(
λ1, λ2, ..., λ j, ..., λr

)
∈ Rr is the parameters. To de-

rive a bifurcation point, information on the periodic point
and the bifurcation parameter is required. In the proposed
method, the PSO that derives the periodic point is called
PSOpp, and the PSO that derives the bifurcation parameter
is called PSObif. We calculate PSOpp and PSObif several
times to derive local bifurcation points.

3.1. Search of periodic points using PSO : PSOpp

Think about the search of p-periodic point. The periodic
point condition is described as Eq. (4).

xn+p = xn = f p(xn, λ). (4)

If the objective function Fpp of PSOpp defined as Eq. (5),
we obtain p-periodic point regardless stability

Fpp(xn) = | f p(xn, λ) − xn| < Cpp. (5)

Cpp is the termination condition of PSOpp.

3.2. Search of bifurcation parameter using PSO:PSObif

Consider the local bifurcation that occurs at the p-
periodic point. In the method of Refs. [8][9], it was pos-
sible to search only the target bifurcation parameter. In the
proposed method, when searching a bifurcation parameter,
we calculate Fbif by doubling the target period p. As a re-
sult, the bifurcation parameters can be searched regardless
of the type of local bifurcation. The objective function Fbif
can be described by the following equation

Fbif(λ) =

∣∣∣∣∣∣d f 2p

dxn
(xn, λ) − 1.0

∣∣∣∣∣∣ < Cbif. (6)

Cbif is the termination condition of PSObif. For the p-
periodic point, the value derived by the method of Sec. 3.1
is used.

4. Application Example

To confirm the effectiveness of the previously proposed
method, we apply the proposed method to the circle map
of the Eq. (7)

θn+1 =

(
θn + a − b

2π
sin2πθn

)
mod 1.0 . (7)

The objective functions Fpp and Fbif can be written as Eqs.
(8) and (9) from Eqs. (5) and (6)

Fpp(θn) =
∣∣∣θn+p − θn

∣∣∣ < Cpp, (8)

Fbif(a, b) =

∣∣∣∣∣∣ dθn+2p

dθn
− 1

∣∣∣∣∣∣ < Cbif. (9)

Below, we attempt to derive local bifurcation points of 2-
period for parameters a and b. The conditions of the objec-
tive function are p = 2，Cpp = 10−5，Cbif = 10−3, and the
parameters of PSO are set as follows

N = 30, w = 0.729, ρ1 = ρ2 ∈ RND[0, 1.414]. (10)

Table 1 shows local bifurcation points a, b, periodic
points θn, objective functions Fpp and Fbif, iteration count
when PSObif satisfied the termination condition Cbif, and
type of local bifurcation point derived by using the pro-
posed method. We derived 10 local bifurcation points by
using the proposed method. All Fpp and Fbif satisfied the
termination condition Cpp and Cbif. In other words, we
can derive the local bifurcation points using the proposed
method. Also, all calculations were completed in 50 times
or less. In addition, proposed method can derive local bi-
furcation points of either type PD or SN.

Figure 1 shows the movement of particles of Fpp in the
parameter occurring 2-periodic period doubling bifurcation
(PD2). Every time the calculation is repeated, the swarm
searches for near the periodic point. Finally, a stable 2-
periodic point is derived. In some cases, swarm derives
unstable 2-periodic point. Figure 2 shows the movement
of particles of Fpp in the parameter occurring 2-periodic
saddle-node bifurcation (SN2). The particles search for 2-
periodic point with the same movement as for PD2. Figure
3 shows the particles movement of PSObif. The lines in the
figure correspond to the local bifurcation. Like PSOpp, the
particles of PSObif also approach the target line by repeat-
ing the calculation.
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Table 1: Numerical results for deriving 2-periodic local bifurcation point.
a b θn Fpp(g) Fbif(g) Itr. Type

0.5059521132 1.4165127979 0.6487707922 4.8908× 10−6 9.6001× 10−4 11 PD2
0.4783598306 1.4460603428 0.4942191760 6.6715× 10−6 7.2322× 10−4 26 PD2
0.4691331608 0.9080361647 0.4270785228 5.9813× 10−6 4.2313× 10−4 13 SN2
0.5556329138 1.2474572659 0.5554151891 8.1097× 10−6 3.5855× 10−4 35 SN2
0.4974749144 1.4145193441 0.4991273891 0.4768× 10−6 7.8707× 10−4 11 PD2
0.4625336009 1.0068731515 0.4323519602 2.6732× 10−6 2.0096× 10−4 39 SN2
0.4732810807 0.8414914340 0.4234446068 1.5262× 10−6 2.9302× 10−4 12 SN2
0.5139263766 0.5992300591 0.5902006424 0.5943× 10−6 3.7821× 10−4 9 SN2
0.5307832891 1.4773922168 0.5081441749 4.9606× 10−6 8.1326× 10−4 16 PD2
0.4308177974 1.6911780513 0.9006508658 0.3309× 10−6 4.3864× 10−4 31 PD2
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Figure 1: Particles movement of PSOpp in parameters occurring PD2.
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Figure 2: Particles movement of PSOpp in parameters occurring SN2.
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Figure 3: Particles movement of PSObif.

5. Conclusions

In this paper, we proposed a method of deriving a local
bifurcation point of a one-dimensional discrete dynamical
system using the PSO. First, we explained the algorithm
of PSO which is one of optimization methods. Next, we
define the equation of one-dimensional discrete dynamical
system and set the objective function to derive the periodic
point and bifurcation parameters. We also proposed an al-
gorithm to derive local bifurcation points by applying two
PSOs repeatedly. Also, we applied the proposed method
to the Circle map which is a one-dimensional discrete map.
Finally, we examined the performance of PSOpp and PSObif
using concrete numerical examples and confirmed the ef-
fectiveness of the proposed method.
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