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Abstract—This paper describes a cellular analy-
sis of covariance structure for data mining using Back
Euler method. It is the implicit method which is the
most practical method for solving stiff systems. It is
difficult to solve these systems with conventional meth-
ods. Davidon-Fletcher-Powell (DFP) method, one of
quasi-Newton methods, is utilized to modify the next
step solution. At each iteration step for quasi-Newton
method, the approximation to the matrix including
second-order partial derivatives is updated by using
new gradient information. By using both of Back Eu-
ler method and DFP method, the solution for stiff sys-
tems in the parameter space can be obtained.

1. Introduction

Recently, machine learning methods have been used
as data mining to acquire the important information
from massive amount of data and to predict future.
That is, the data mining is to find ’rule’ as classifica-
tion, prediction, I/O mapping and association by using
machine learning algorithm. Conventionally, decision
tree methods based on so-called ’if-then’ rule have been
often used. For example, MLC++ [1] which is devel-
oped by Stanford University and Silicon Graphics, Inc
is a famous software tools including top-down decision
tree algorithms such as C4.5 [2] or bottom-up method
like OODGs.

However, the decision tree methods are not very
suitable for the information which includes continuous
data. Back propagation neural network is very popu-
lar as the way of learning, and its application is being
expected to solve various problems in many fields. One
major drawback to the back propagation algorithm is
that interpreting a model is difficult. So it is not easy
to detect meaningful information.

We propose a cellular analysis of covariance struc-
ture to predict the meaningful information including
continuous data. For massive amount of data all sparse
matrices corresponding to express cellular signal flow
graph (SFG) are constructed by using sparse matrix
technique which has been used in the circuit simulation
such as SPICE. To understand estimator of population
parameters brings to grasp main internal processing.

In this paper, Backward Euler method, one of meth-
ods for solving an differential equation, is used. The
important point is that this method can solve stiff sys-
tems which have large difference among eigenvalues.
The solution is obtained for a model which is difficult
to solve by using conventional methods. The resulted
parameters are used as weights on edges in the cellular
SFG which works as a prediction model for unknown
input data. Our simulation for the model of ”Purchase
of a Car” shows good result.

2. Cellular Structural State and Measurement
Equations

The observed variable x is a visible information data
which has been obtained from real human behavior,
natural environment and so on. The average µx and
the real covariance matrix S is calculated by using the
observed variable x.

Let η ∈ Rn be the latent variable of covariance
structure method. The cellular structural equation is
expressed by

η = B#η + Γξ + ζ (1)

where B# ∈ Rn×n and Γ ∈ Rn×m are coefficient
weight matrices which express connection between the
variables, and ζ ∈ Rn is the error variable for the
latent variables.

The cellular measurement equation should be used
to express the casual relations among the observed
variables x ∈ Rl and the latent variable η. The mea-
surement equation is given by

x = µx + Kη + Λξ + e (2)

where K ∈ Rl×n and Λ ∈ Rl×m are coefficient weight
matrices which express connection between the vari-
ables η, ξ and observed variables x, and e ∈ Rl is the
error variables for the input.

Each i-th row vector of the matrix B#,Γ,K and
Λ is including a weight element wij on the edge from
a cell Cj to Ci. Generally, the number of elements is
also very few and then the matrices B#,Γ,K and Λ
are sparse.
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The matrices B#,Γ, K and Λ are cellular (sparse)
matrices in the case of large SFG.

In this paper, our purpose is to determine the pa-
rameters of B#,Γ, K,Λ, e and ζ by proposed learning
method.

Table 1: Multivariate data

Observed Item S1 S2 . . . S50

u1 Color 5 3 . . . 4
u2 Style 4 4 . . . 4
u3 Power performance 4 4 . . . 4
u4 Suspension setting 3 3 . . . 3

3. Optimization

3.1. Fit Function

Let z be the model standardized vector, then it is
given by

z = x − µx. (3)

Let Cu ∈ Rl×l be the covariance matrix of the state
variable, then it is derived from the cellular structural
equation and the measurement equation as follow:

Cu = E(zz′)
= GB0Γ0Φ0Γ′

0B
′
0G

′ (4)

where G = (I 0), B0(B#, K),Γ0(Λ,Γ),Φ0(∆,Ψ,Φ).
Here these ∆, Ψ and Φ are covariance matrices of ξ, ζ
and e. X′ is a transposed matrix of X.
Let θ ∈ Rp be vector of population parameters which
is elements of the matrices B#, K,Λ,Γ,∆,Ψ and Φ,
then the Generalized Least Squares (GLS) method is
applied to the fit function as

fGLS(θ) =
1
2
tr((S − Cu)S−1)2 (5)

where S ∈ Rl×l is the real sample covariance matrix
given by

S =
1
N

ZZ ′, (6)

Z ∈ Rl×l is the data matrix standardized by expected
value from Table 1 and N is the number of samples
and tr(X) means a trace of the matrix X.

The matrix Cu is approached to S by using opti-
mization calculation to obtain all parameters of sparse
matrices and errors. In this paper, we use both of
Backward Euler method and quasi-Newton method.

3.2. New Algorithm

The purpose of this paper is that function (5) is min-
imized, and the parameter at that time is determined.

So we want to solve the equation:

g(θ) = 0 (7)

where g(θ) = ∂fGLS

∂θ
.

However, the convergence depend on initial value
when a nonlinear equation is solved by an iterative
solution method. In ordre to achieve the purpose, we
solve the following equation by using Backward Euler
method.

θ̇ = g(θ) (8)

3.2.1. Backward Euler Method

The Backward Euler method is implicit, in that
it uses the differentiation at the next time step, in-
stead of the current one. Implicit methods are the
most practical method for solving stiff systems. This
method approximates the solution fGLS(θ) at virtual
time tk+1 = tk + h by solving the implicit equation:

θk+1 = θk + hg(θk+1) (9)

where the gradient vector g(θk) is evaluated at θk.
Since this equation(9) may be nonlinear, solving it in

general requires an iterative solution method. In this
paper, quasi-Newton method is provided for solving
the implicit equation.

3.2.2. Quasi-Newton Method

The given function is approximated in each iteration
by a truncated Taylor series.

F (θ) ≈ F (θn)+G(θn)′(θ−θn)+
1
2
(θ−θn)′H(θn)(θ−θn)

(10)
where the gradient vector G(θn) is evaluated at θn.
H(θn) ∈ Rp×p is the matrix of second-order partial
derivatives of function with respect to θn. This is
called Hessian. If it assume that F (θ) takes its mini-
mum at θ = θn, the gradient is zero.

θn+1 = θn − αH(θn)−1G(θn) (11)

where α is the step size, setting to 1. However, as the
Hessian leads to algorithmic and computational com-
plexities, an approximation technique of the inverse
Hessian is often used. We use Davidon-Fletcher-Powell
(DFP) method which is one of quasi-Newton methods.
The update formula is as follows:

Hn+1 = Hn +
zz′

z′u
− H′

nuu′Hn

u′Hnu
(12)

where

z = −αHnG(θn) u = G(θn+1) − G(θn)

. Because of conjugate property of direction vector,
H(θn+1) is set to H(θ1) after p-iterations.
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An initial matrix H(θ1) is unit matrix. Then the
approximation at first follows the line of steepest de-
scent, and later follows the estimated Hessian more
closely.

3.2.3. Proposed Method

An implicit method requires the solution of a non-
linear equation at each step. For one step of Backward
Euler method, we use the quasi-Newton method.

F(θk+1) = θk+1 − θk − hg(θk+1) (13)

In order to satisfy the equation(9), F(θk+1) is mini-
mized by Newton method.

(n+1)θk+1 = (n)θk+1 − (
∂F((n)θk+1)

∂(n)θk+1
)−1F((n)θk+1)

(14)

= (n)θk+1 − (I − h
∂g((n)θk+1)

∂(n)θk+1
)−1F((n)θk+1) (15)

The computation of the matrix (∂g((n)θk+1)

∂(n)θk+1
) is not

available or expensive. Then the approximation tech-
nique (DFP) is used. We replace (I − h∂g((n)θk+1)

∂(n)θk+1
)

by the approximation (equation(12)). Fig 1 shows
flowchart of this method.

(n+1) θk+1 = (n) θk+1  - (n)H g( (n) θk+1 )

error : convergence criterion
k = 1 : Iteration times

 θ1 : initial vector

YES

| θk  -  θk+1 | < error

θ = θk+1

YES

NO

NO
k = k+1

(n)H : update

^

θk+1 = θk  + hg( θk+1 )

| (n) θk+1  -  
(n+1) θk+1 | < error

θk = (n+1) θk+1

(n) θk+1 = (n+1) θk+1

Figure 1: flowchart of proposed method

4. Model of ”Purchase of a Car”

The model of ”Purchase of a Car” is used as an ex-
ample of analysis of the cellular covariance structure.
A part of the observed data is showed in Table 1. This
data is collected from survey to 50 people. Four points
considered at the purchase of a private car were evalu-
ated by five stages. The four variables [x1, x2, . . . , x4]
are defined as observed variables in Table 1.

The state variable of η1 means a design, the state
variable of η2 means a performance, and the state vari-
able of ξ1 means a value of a car. The parameters of
ζ1 and ζ2 are the error variables.

A design and a performance are determined by a
value of a car. A user can set the parameters in ad-
vance. Some parameters of the matrices are set to 0
before learning. It is useful to set some parameters
previously.

It is very important that the coefficient matrices are
sparse and its SFG is cellular network. The weights
on the edges incident to a cell Cj are corresponding to
the template like that of cellular neural network.

In the simulation, we use two models.

4.1. Model 1

The cellular structural state equation of the model
for ”Purchase of a Car” is given by

(
η1

η2

)
=

(
0 0
0 0

) (
η1

η2

)
+

(
γ11

γ21

) (
ξ1

)
+

(
ζ1

ζ2

)
(16)

The cellular measurement equation can be also de-
fined by the user as follows




x1

x2

x3

x4


=




µx1

µx2

µx3

µx4


+




κ11 0
κ21 0
0 κ32

0 κ42




(
η1

η2

)

+




0
0
0
0


(

ξ1

)
+




e1

e2

e3

e4


(17)

The SFG corresponding to the equations is given in
Fig 2.

4.2. Model 2

In the second model, a pass is added. The design
is expressed by the value of car and the performance.
Then the equations are as follows

(
η1

η2

)
=

(
0 β12

0 0

) (
η1

η2

)
+

(
γ11

γ21

) (
ξ1

)
+

(
ζ1

ζ2

)

(18)
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Figure 2: SFG of ”Purchase of a Car” model1
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The SFG corresponding to the equations is given in
Fig 3.
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Figure 3: SFG of ”Purchase of a Car” model2

5. Simulation Results

In the simulation, the initial value θ0 was set to ran-
dom parameters from −1 to 1, the value of convergence
criterion was equal to 10−6, and maximum number of
iterations was 2000.

We simulated conventional method (software) about
same models. Then in the model 2, we could not get

result. But the parameters were determined by our
proposed method. Fig 4 shows the learning curves for
the model 2 of ”Purchase of a Car”. The number of
steps is shown on the horizontal axis, and a value of
fit function is shown on the vertical axis.
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Figure 4: The simulation results of model 2

Conventional methods have identifiability problem.
Therefore setting some conditions is required. How-
ever our proposed method could get the parameters.

6. Conclusion

In this paper, a novel cellular analysis method of
covariance structure for data mining was proposed.
We used Back Euler method for solving stiff systems.
Then the quasi-Newton method was utilized to modify
the next step solution. Since this method can approxi-
mate the inverse matrix including second-order partial
derivatives, which is arduous to compute. Experimen-
tal results show that the performance of our proposed
method has better than that of conventional methods.
In future, the nonlinear CNN differential equations for
(1) and (2) will be used and automatic model decision
will be found for data mining.
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