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Abstract—We investigate a very simple water tank sys-
tem whose water level is digitally controlled with hystere-
sis. In spite of its simple mechanism, we show that its be-
havior is very complicated.

1. Introduction

Hysteresis is very useful and common in control, as can
be seen in familiar examples such as on-off temperature
control, which usually has a deadband (hysteresis) to avoid
frequent on-off switching at short intervals [1]. Meanwhile,
as computer technology is developed, use of digital control
is also becoming very common. Then, what happens if a
system with hysteresis is digitally controlled? In this paper,
we consider a very simple water tank system whose water
level is digitally controlled with hysteresis.

A schematic diagram of the water tank system is shown
in Fig. 1. The water level of the tank is controlled with
hysteresis to keep it around h0 and h1. If state transitions
occur exactly at the endpoints of the deadband, this system
is very common and the behavior is obvious; the state is
attracted into the obvious limit cycle in a finite time and
fairly stable.

Our interest in this paper is in the behavior of the system
digitally controlled. If the system is digitally controlled, or
more specifically, if the decision of the state transition is
made at a uniform intervals, state transition does not nec-
essarily occur at the endpoints anymore. In this paper, we
will show that this system can be reduced to a double rota-
tion [2], and it shows a complicated behavior.

It should be noted that we consider the system as an ab-
stract model; the water level of the tank can be replaced
with anything else (e.g., room temperature), only if the dy-
namics is preserved. Besides, this system is undoubtedly
one of the simplest example of hybrid systems (see Ref. [1]
for introduction to hybrid systems).

2. Water-tank system with hysteresis

We consider a water tank that has a controllable incom-
ing flow and a constant outgoing flow as shown in Fig. 1.
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Figure 1: A schematic diagram of the water tank system.
The tank has a controllable incoming flow and a constant
outgoing flow.

The incoming flow can be turned on and off with a valve:
if turned on (v = on), the water level increases at a rate of
r1; if turned off (v = off), the water level decreases at a rate
of r0. Namely, the behavior of the system can be described
as follows:

u̇ =

⎧⎪⎪⎨⎪⎪⎩
−r0 if v = off,

+r1 if v = on,
(1)

where u denotes the water level of the water tank.
We can observe the water level through two sensors: S 0

and S 1. A sensor can detect if the water level is below
the sensor (on) or not (off). Let the sensors S 0 and S 1 are
located at the level of h0 and h1, respectively, where h0 <
h1. Then, the measurement values from the sensors varies
depending on the water level u as follows:

(S 0, S 1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(off, off) if u < h0,

(on, off) if h0 ≤ u < h1,

(on, on) if h1 ≤ u.

To keep the water level around h0 and h1, we control the
valve with hysteresis according to the information from the
sensors. Specifically, we control the valve with the follow-
ing rule:
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Figure 2: The state space of the water tank system. The
thick line denotes the stable limit cycle of the system.
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Figure 3: State transitions of the water tank system. The
system has a discrete variable v for the state of the valve
which can be turned “on” and “off”. When v = on, the
water level u increases at a rate of r1, and when v = off, the
water level u decreases at a rate of r0. The state transitions
occur at the instants when the water level u escapes out
from the deadband h0 ≤ u < h1.

• if S 0 is off, turn on the valve;

• if S 1 is on, turn off the valve;

• otherwise, keep the valve intact (i.e., deadband).

With this control rule, the behavior of the system is de-
terministic, and therefore it is a (hybrid) dynamical sys-
tem. As shown in Fig. 2, the state space of the system is
R × {off, on}, where the first state variable u ∈ R denotes
the water level, and the second state variable v ∈ {off, on}
denotes the state of the valve. Then, as shown in Fig. 3, the
state evolves according to the following equation in con-
junction with Eq. (1):

v′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

on if u < h0 and v = off,

off if u ≥ h0 and v = off,

on if u < h1 and v = on,

off if u ≥ h1 and v = on.

(2)

Note that the state transitions occur at the instant when u
reaches at the thresholds.

Then, as shown in Fig. 4(a), the behavior of the system
is obvious; the state is eventually attracted into the stable
limit cycle in a finite time. This kind of on-off control is
commonly used in engineering.
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Figure 4: (a) A typical time evolution of the water tank sys-
tem with hysteresis. Behavior of the system is eventually
periodic. (b) Digital control of the water tank system with
hysteresis. State transitions occur only at uniform intervals.

3. Digital control

In this section, we are interested in what happens if the
water level is digitally controlled. Specifically, we assume
that the state transitions described by Eq. (2) occur only at
uniform intervals of d seconds.

Let (u, v) ∈ R × {off, on} be the state of the system at the
sampling time t. Then state at the next sampling time t + d
can be described by the map P : R×{off, on} → R×{off, on}
as follows:

P(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u + r1d, on) if u < h0 and v = off,

(u − r0d, off) if u ≥ h0 and v = off,

(u + r1d, on) if u < h1 and v = on,

(u − r0d, off) if u ≥ h1 and v = on.

(3)

A typical time evolution of the digitally controlled water
tank system is shown in Fig. 4(b).

Let Ioff = [h0 − r0d, h0) × {off} and Ion = [h1, h1 + r1d) ×
{on}. Then every orbit of the system visits the intervals
Ioff and Ion alternately. For a state (u, off) ∈ Ioff, let non(u)
be the smallest positive integer such that Pnon(u)(u) ∈ Ion.
Similarly, for a state (u, on) ∈ Ion, let noff(u) be the small-
est positive integer such that Pnoff(u)(u) ∈ Ioff. Specifically,
non(u) and noff(u) are given by

non(u) = −�(u − h1)/(r1d)�,
noff(u) = �(u − h0)/(r0d)� + 1.

We also define the maps P0 : Ioff → Ion and P1 : Ion → Ioff
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by

P0 : (u, off) �→ (u + non(u)r1d, on),

P1 : (u, on) �→ (u − noff(u)r0d, off).

By reversing the sign of the state variable u ∈ R if neces-
sary, we can assume r0 ≤ r1 without any loss of generality.
Then the first return map of P on the interval Ioff is

P|Ioff (u) = P1 ◦ P0(u) = u + non(u)r1d − noff((P0(u))r0d.

It follows from the assumption r0 ≤ r1 that

non(u) =

⎧⎪⎪⎨⎪⎪⎩
k if u < h1 − (k − 1)r1d,

k − 1 if u ≥ h1 − (k − 1)r1d,

where k = �(h1 − h0 + r0d + r1d)/(r1d)�. Therefore, we
obtain

P|Ioff(u) =

⎧⎪⎪⎨⎪⎪⎩
u + kr1d if u < h1 − (k − 1)r1d,

u + (k − 1)r1d if u ≥ h1 − (k − 1)r1d,

(mod r0d)

Now, we normalize the interval Ioff to [0, 1) with the lin-
ear map H(x) = (r0d(x − 1) + h0, off). Then we have

H−1 ◦ P|Ioff ◦ H(x) =

⎧⎪⎪⎨⎪⎪⎩
{x + α} if x < c,

{x + β} if x ≥ c,

where {·} is defined by {x} = x − �x�. The parameter values
α, β, and c are as follows:

α = {kr1/r0},
β = {(k − 1)r1/r0} (4)

c = ((h1 − h0)/d + r0 + r1 − kr1)/r0.

Note that, if c ≥ 1, the map is a simple rotation given by
x �→ {x + α}.

4. Double rotations

We have shown that the behavior of the water tank sys-
tem can be reduced to that of the map f : [0, 1) → [0, 1)
defined by

f (x) =

⎧⎪⎪⎨⎪⎪⎩
{x + α} if x < c,

{x + β} if x ≥ c,

which is called double rotations [2]. A typical graph of a
double rotation is shown in Fig 5(a).

We define the discharge number q(α,β,c)(x) of a double
rotation f(α,β,c) for an initial state x ∈ [0, 1) as

q(α,β,c)(x) = lim
n→∞

1
n

n−1∑

i=0

χ[c,1)( f i
(α,β,c)(x)),

if the limit exists, where χ is the characteristic function.
Fig. 5(b) shows a graph of q(α,β,c)(x) as a function of c,
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Figure 5: (a) A graph of a double rotation. (b) A discharge
number as a function of c for α ≈ 0.281 and β ≈ 0.419.

where α and β are fixed. The graph is apparently very
complicated, resembling a devil’s staircase. In fact, for al-
most every (α, β), there exists a measure-zero Cantor set Γ
such that the graph is constant in every connected interval
in [0, 1] \ Γ. (See Ref. [2, 4] for details of the self-similar
structure in the parameter space of double rotations.)

5. Switching frequency

In this section, we show that the behavior of the water
tank system reflects the self-similar structure in the param-
eter space of double rotations.

If the state is in [0, c) and [c, 1), the input flow is turned
on during the duration of exactly kd and (k − 1)d seconds,
respectively. Therefore, if the water tank system is reduced
to a double rotation f(α,β,c), the average duration of the input
flow is given by k − q(α,β,c)(x).

According to Eq. (4), the parameter c depends linearly
on (h1 − h0)/d, and α and β do not depend on h1 − h0 or
d. Therefore, a graph of average duration of the input flow
as a function of the deadband width h1 − h0 (or sampling
interval d) resembles a devil’s staircase.

The attractor also resembles a Cantor set and has com-
plicated appearance (not shown).

6. Conclusion

We have shown that the behavior of a simple water tank
system can be reduced to that of a double rotation. In spite
of its simple mechanism, it shows a complicated behavior.

As we pointed out before, this system is an abstract
model. This kind of system can be considered as general, as
indicated by the fact that the exactly same dynamics arises
in a fundamental model of partial discharge phenomena [3].

Since this system is undoubtedly one of the simplest hy-
brid systems that produce a complicated behavior, it can be
expected to be a platform to study a certain class of hybrid
systems.
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