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Abstract—The purpose of this research is to clarify how
the topological properties of a neural network change by a
rule of synaptic plasticity. To evaluate the topology, we
use three variables: (1) average path length (L) that de-
notes an average of minimum distance between two neu-
rons, (2) clustering coefficient (γ) that denotes an average
fraction of actual number of connections over total possible
edges in the neighborhood of a neuron, and (3) group coef-
ficient (G) that denotes an average number of connections
between any groups of neurons, which is an extension ofγ
from a neighborhood to any groups of a neuron. We simu-
lated one dimensional circulated neurons of integrate & fire
models with Hebbian or STDP synaptic plasticity alterna-
tively. When the initial topology is “regular” (with largeγ,
G, andL), L decreases in spite of maintained large values of
γ andG as the learning proceeds. When the initial topology
is “random” (with smallγ, G, andL), G increases whileL
is kept small. These results suggest the synaptic plasticity
changes the network topology so that each neuron transfers
information more efficiently.

1. Introduction

Learning methods of neural networks by synaptic
plasticity have been studied so far. Hebbian rule is one
of the most known rules of synaptic plasticity [1]. On
the other hand, recently, spike-timing-dependent plastic-
ity (STDP) has been discovered, in which synaptic weights
change depending on the difference between pre- and post-
synaptic spike timings [2]. And some studies reported that
STDP have relationship to the synchronous firing [3][4].

On the other hand, Watts showed that in real networks
the average path lengthL is relatively small and the cluster-
ing coefficientγ is relatively large, which are explained by
the “Small-World” model. The “Small-World” networks
include Film actor relationship, the power grid, neural net-
work of C. elegans, for example [6]. In a neural network
model with smallL and largeγ such as a Small-World, syn-
chronous spikes occur more frequently than that with large
L and largeγ [5]. This implies that the network topology
affects the spike patterns and that these variables represent
the essential property of the topology.

From these, we assume thatL and γ represent essen-
tial property of network topology and examine how the

two variablesL andγ are changed in neural networks by
the Hebbian rule or STDP. In this paper, we simulated one
dimensional circulated network of integrate & fire neuron
models with Hebbian or STDP synaptic plasticity alterna-
tively. We evaluate the network topology byL, γ, and
G. In this paper, we propose a new measureG because
γ cannot evaluate clustering among spatially separated but
strongly connected neurons.G is an extended measure of
γ from neighborhood to any groups of a neuron. When
the initial topology is “regular” (with largeγ, G, andL),
L decreases in spite of maintained large values ofγ and
G as the learning proceeds. When the initial topology is
“random” (with smallγ, G, andL), G increases whileL
is kept small. These results suggest the synaptic plasticity
changes the network topology so that each neuron transfers
information more efficiently.

2. Method

2.1. Model

In this paper, we used a neural network model com-
posed of leaky integrate & fire neurons. This model obeys
the following equations:

xi(t + 1) =
N∑
j

sjwi j y j(t)

+Aei(t) + Bxi(t) (1)

yi(t) =

{
1 if xi(t) > θ
0 otherwise,

(2)

wherexi(t) is an internal activity ofi-th neuron at timet,
y j(t) is an output value ofj-th neuron at timet, N is the total
number of the neurons,sj is the parameter of whetherj-th
neuron is excitatory or inhibitory,wi j is the synaptic weight
from j-th neuron toi-th neuron,A is the size of an external
input, andei(t) is the on-off signal of external input fori-
th neuron,B is the decay parameter at every step (0<B<1),
andθ is the threshold for firing. And, each neuron has abso-
lute refractory period that has a constant interval (3 steps).
Each cell has an excitatory or inhibitory property alterna-
tively, which determines the value ofsj . In the simulations,
about 16% of all cells are inhibitory, and the rest (84%) are
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excitatory. For simplicity, time is assumed to be discrete.
We used two kinds of external input patterns. First, a

spatiotemporal pattern is repeatedly input (pattern A). Pat-
tern A consists of periodic Poisson trains. Pattern B is
a temporally correlational pattern superimposed with un-
correlated signals which consist of aperiodic Poisson trains
(Fig.1).
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Figure 1: Input signals with spatiotemporal correlation
(pattern B)

2.2. Learning rules of synaptic plasticity

In this simulation, we used two rules of synaptic plas-
ticity which are Hebbian rule and STDP. And the rules are
applied to excitatory neurons only, for simplicity.

Hebbian rule is a learning rule that the synaptic weight
wi j is potentiated if both ofj-th and i-th neuron’s firing
rates are high. To prevent the network from bursting, we
use the following covariance rule:

wi j (t) = Ah(ȳ j − Bh)(ȳi − Bh) +Chwi j (t − 1), (3)

where ¯yi and ¯y j are the firing rates ofi-th and j-th neuron,
Ah is the learning rate,Bh is the spontaneous discharge rate,
andCh is the decay parameter at every step. We assume
that the firing rates are calculated from the spike trains for
10 steps before the current time.

STDP is a learning rule that synaptic weights are
changed by the timing between pre- and post-neuron’s
spikes. In this simulation, we assume that the window func-
tion has a shape of an inverse proportion. The STDP rule
of potentiation or depression obeys the following equation
with using different parameters:

wi j (t) = y j(t)
Bs∑

n=−Bs,n,0

As

n
yi(t + n) +Cswi j (t − 1), (4)

wheren is the temporal difference betweenj-th neuron and
i-th neuron. Synaptic weights are potentiated byn > 0
and depressed byn < 0. As is strength of potentiation or
depression,Bs is the ranges of the time window of STDP,
andCs is the decay parameter at every step (0<Cs≤1). In
STDP,Cs is 1 (no decay factor).

2.3. The essential connections

To compare the topology, we should assume that the
total connections on which the parameters are calculated
are constant. However, every connection should have a
continuous value of synaptic weight for learning. Thus, we
regard the fixed number of connections as essential connec-
tions. We definedlci j as the essential connection fromj-th
neuron toi-th neuron. lci j=1 denotes connected connec-
tion, andlci j=0 denotes unconnected connection. To keep
the number of essential connections constant, we decide
the value oflci j depending onwi j . First, we sort synap-
tic weights (wi j ) in order of the strength. Second, we se-
lect 10% (average number of connections in initial state) of
synaptic weights in descending order. Finally we setlci j=1
for the pair ofi and j of the selected synaptic weightswi j ,
and the other connections arelci j=0.

2.4. Three parameters for network topology

2.4.1. Average path length

Assuming thatlvi j denotes the shortest distance fromj-
th neuron toi-th neuron, average path lengthL can be com-
puted as follows:

L =
1

N(N − 1)

N∑
i=0

N∑
j=0, j,i

lvi j . (5)

When the shortest distance fromj-th neuron toi-th neuron
passesk-th neuron,lvi j denotes the sum oflck j andlcik. The
larger the path lengthL is, the more the cost of information
transformation in the network has.

2.4.2. Clustering coefficient

The clustering coefficient γ denotes an average degree
of clustering of each neuron’s at neighborhood. Assuming
thatD denotes the radius of a neuron’s neighborhood,γ is
calculated as follows:

γ =
1
N

N∑
i=0

Ri

I i
=

1
N

N∑
i=0

∑i+D
j=i−D lci j

2D
, (6)

whereRi is the number of real connections aroundi-th neu-
ron’s neighborhood, andI i is the maximum number of con-
nections aroundi-th neuron’s neighborhood. The larger
value of γ means that the more local connections (more
clustering) exist.

2.4.3. Group coefficient

We propose the group coefficientG which Frage degree
of clustering at each group of neurons.

G =
1
N

N∑
i=0

Rgi

Igi
=

1
N

N∑
i=0

∑i+D
j=i (
∑i+D

k=i lc jk +
∑m+D

m∈N lc jm)

2D2
, (7)
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whereRgi is the number of real connections among around
i-th neuron’s neighborhood (group A) and anotherm-th
neuron’s neighborhood (group B).m is selected so thatRgi

has the maximum value.Igi is the maximum number of
connections among group A and B. In this simulation, we
usedD = 5 at calculatingγ andG. We consider thatG can
evaluate clustering among spatially separated but strongly
connected neurons.

(a) Regular graph (RG) (b) Random graph (RM)

Figure 2: Graphs of one dimensional circulated neurons

2.5. Initial condition

In this simulation, we assume two initial conditions that
are one-dimensional circulated neurons. One is a regu-
lar graph (RG) which connects each neuron’s neighbor-
hood (refer to Fig.2(a),N=16,D=2). Another one is a ran-
dom graph (RM) which connects two neurons randomly
(refer to Fig.2(b),N=16). The number of all neurons is
300. Each neuron has random initial potentials distributed
plainly from 0 to 80% of the value ofθ. We assume an
average number of connections is 10% in the initial state
for both of RG and RM. ThereforeD of RG is 15. We
assume that initial synaptic weights arewi j=0.45 at the
initial connections. And synaptic weights can change be-
tween 0.000185 to 1.9 because of synaptic plasticity. We
set 0.000185 for the minimum synaptic weight because we
make a chance to be potentiated even for completely de-
pressed synaptic weights.

A spatiotemporal pattern is repeatedly input as an exter-
nal input (pattern A) on a RG. On the other hand, a tempo-
rally correlational pattern is input (pattern B) on a RM. This
is because stronger correlational patterns will be needed
for the topological change of RM than that of RG. The
pattern A consists of periodic Poisson trains (av.ISI=50,
A=5.0, period=50steps). The pattern B consists of aperi-
odic Poisson trains (av.ISI=50, A=5.0) plus spatiotempo-
ral correlations (Fig.1). Each neuron’s parameter is as fol-
lows: θ=12, B=0.95, s=2.73 or−4.0. Parameters of Heb-
bian rule areAh=0.12,Bh=0.05,Ch=0.999, and parameters
of STDP areAs=10, Bs=5 with n > 0 (potentiation) and
As=8, Bs=13 withn < 0 (depression).

3. Simulation results

3.1. Spike patterns

Applying the Hebbian rule to both of RG and RM,
we observe synchronous firings. Fig.3 shows an example
of spike patterns at RG. Also applying STDP at RG, we
usually observe synchronous firings of some neurons. But
applying STDP at RM, we cannot observe synchronous fir-
ings.
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Figure 3: Spike pattern with Hebbian rule on RG

3.2. Modulation of topology

Owing to the synaptic plasticity at RG, the initial
topology of regular connections changes. Fig.4(a) and (b)
show the essential connections after application of Hebbian
rule and STDP, respectlvely. We can see that some of es-
sential connections are dispersed from the initial diagonal
connections and are clustered.

After the synaptic plasticity at RM, we can observe the
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(a) Hebb (b) STDP

Figure 4: Synaptic change (essential connections) of RG

clusters that run parallel with diagonal line (Fig.5). We
consider that these parallel clusters are due to the strong
spatiotemporal correlations in pattern B (Fig.1). The clus-
ters are stronger in Hebbian rule (Fig.5(a)) than those in
STDP (Fig.5(b)).

Fig.6 and Fig.7 show the average and standard deviation
of L, γ, andG for 50 trials. In the case of RG, we observe
thatL decreases in spite of maintained large values ofγ and
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Figure 5: Synaptic change (essential connections) of RM

G. On the other hand, in the case of RM, we observe that
L is kept small. The value ofγ rarely changes. In the case
of RM with Hebbian rule, we can observe thatG increases.
Fig.8 shows the relation ofL andγ in the graph construc-
tion model of ”Small-World” [6]. Comparing these fig-
ures, we can notice that the topological change by learning
closely traces theL-γ curve of the ”Small-World”.

To summarize, in the case of RG, the result suggests
that the synaptic plasticity changes the network topology in
which each neuron transfers information more efficiently
with keeping the clustering structures. This may be the
main reason why most of the output spikes become syn-
chronous as the learning proceeds (Fig.3).
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Figure 6: Relation ofL andγ

4. Conclusion

In this paper, we study the effect of synaptic plasticity
on the neural network topology by integrate & fire neuron
models. In the case of RG,L decreases in spite of main-
tained large values ofγ andG as the learning proceeds.
In the case of RM with Hebbian rule,G increases whileL
is kept small. These results suggest the synaptic plasticity
change flexibly the network topology so that each neuron
transfers information more efficiently.
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Figure 7: Relation ofL andG
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Figure 8:L andγ of the ”Small-World” graph
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