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Abstract—The purpose of this research is to clarify howtwo variablesL andy are changed in neural networks by
the topological properties of a neural network change bythe Hebbian rule or STDP. In this paper, we simulated one
rule of synaptic plasticity. To evaluate the topology, walimensional circulated network of integrate & fire neuron
use three variables: (1) average path lendgththat de- models with Hebbian or STDP synaptic plasticity alterna-
notes an average of minimum distance between two netively. We evaluate the network topology by v, and
rons, (2) clustering cdcient (y) that denotes an averageG. In this paper, we propose a new measGrbecause
fraction of actual number of connections over total possiblg cannot evaluate clustering among spatially separated but
edges in the neighborhood of a neuron, and (3) group coeftrongly connected neuron& is an extended measure of
ficient (G) that denotes an average number of connectionsfrom neighborhood to any groups of a neuron. When
between any groups of neurons, which is an extensign ofthe initial topology is “regular” (with large/, G, andL),
from a neighborhood to any groups of a neuron. We simu:- decreases in spite of maintained large valuey ahd
lated one dimensional circulated neurons of integrate & fir€ as the learning proceeds. When the initial topology is
models with Hebbian or STDP synaptic plasticity alterna“*random” (with smally, G, andL), G increases whild
tively. When the initial topology is “regular” (with largg, is kept small. These results suggest the synaptic plasticity
G, andlL), L decreases in spite of maintained large values ahanges the network topology so that each neuron transfers
v andG as the learning proceeds. When the initial topologynformation more #iciently.
is “random” (with smally, G, andL), G increases whilé
is kept small. These results suggest the synaptic plasticié)_/ Method
changes the network topology so that each neuron transfers
information more &iciently. 2.1. Model

In this paper, we used a neural network model com-
1. Introduction posed of leaky integrate & fire neurons. This model obeys

the following equations:
Learning methods of neural networks by synaptic

plasticity have been studied so far. Hebbian rule is one N

of the most known rules of synaptic plasticity [1]. On x(t+1) = ZSiWinJ(t)

the other hand, recently, spike-timing-dependent plastic- i

ity (STDP) has been discovered, in which synaptic weights +Aa(t) + Bx(t) (1)
change depending on thefiirence between pre- and post-

synaptic spike timings [2]. And some studies reported that 1 if x(t) >0

STDP have relationship to the synchronous firing [3][4]. w@ = { 0 otherwise @)

On the other hand, Watts showed that in real networks
the average path lengthis relatively small and the cluster- wherex;(t) is an internal activity of-th neuron at time,
ing codficienty is relatively large, which are explained by y;(t) is an output value of-th neuron at timeé, N is the total
the “Small-World” model. The “Small-World” networks number of the neurons; is the parameter of whethg+th
include Film actor relationship, the power grid, neural netaeuron is excitatory or inhibitoryy;; is the synaptic weight
work of C. elegansfor example [6]. In a neural network from j-th neuron td-th neuron A is the size of an external
model with smalL and largey such as a Small-World, syn- input, ande(t) is the on-df signal of external input for-
chronous spikes occur more frequently than that with largls neuron B is the decay parameter at every stepB&1),
L and largey [5]. This implies that the network topology andé is the threshold for firing. And, each neuron has abso-
affects the spike patterns and that these variables represké refractory period that has a constant interval (3 steps).
the essential property of the topology. Each cell has an excitatory or inhibitory property alterna-
From these, we assume thatand y represent essen- tively, which determines the value sf. In the simulations,
tial property of network topology and examine how theabout 16% of all cells are inhibitory, and the rest (84%) are
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excitatory. For simplicity, time is assumed to be discrete. 2.3. The essential connections

We used two kinds of external input patterns. First, a
spatiotemporal pattern is repeatedly input (pattern A). Pat- 10 compare the topology, we should assume that the
tern A consists of periodic Poisson trains. Pattern B j©tal connections on which the parameters are calculated
a temporally correlational pattern superimposed with urfire constant. However, every connection should have a

correlated signals which consist of aperiodic Poisson traiﬁé)ntlnuous_value of synaptic We|ght for learning. Thus, we
(Fig.1). regard the fixed number of connections as essential connec-

tions. We definedc;; as the essential connection frgrth
neuron toi-th neuron. Icj;=1 denotes connected connec-
tion, andlc;;=0 denotes unconnected connection. To keep
the number of essential connections constant, we decide
the value oflc;; depending orw;j. First, we sort synap-

tic weights () in order of the strength. Second, we se-
lect 10% (average number of connections in initial state) of
synaptic weights in descending order. Finally welsgt1l

for the pair ofi and j of the selected synaptic weighis;,

and the other connections dog=0.

neuron #.

2.4. Three parameters for network topology

time

2.4.1. Average path length

Figure 1: Input signals with spatiotemporal correlation Assuming thatv;; denotes the shortest distance frgm
(pattern B) th neuron td-th neuron, average path lendtitan be com-
puted as follows:

2.2. Learning rules of synaptic plasticity 1 N N

In this simulation, we used two rules of synaptic plas- L= N(N - 1) Zo: '—oZ _ ij. ©®)
ticity which are Hebbian rule and STDP. And the rules are e
applied to excitatory neurons only, for simplicity. When the shortest distance frojth neuron td-th neuron

Hebbian rule is a learning rule that the synaptic weighbasseg-th neuronlv;j denotes the sum ¢d; andicy. The

wij is potentiated if both ofj-th andi-th neuron's firing  |arger the path length is, the more the cost of information
rates are high. To prevent the network from bursting, Wgansformation in the network has.

use the following covariance rule:
Wij (t) = An(Yj — Bn)(i — Bn) + Cawij (t — 1), (3) 2.4.2. Clustering cggcient

wherey; andy; are the firing rates dtth andj-th neuron, ~ The clustering caicienty denotes an average degree
A, is the learning rateB;, is the spontaneous discharge rate®f clustering of each neuron’s at neighborhood. Assuming
andCy, is the decay parameter at every step. We assuriigatD denotes the radius of a neuron’s neighborhaots,
that the firing rates are calculated from the spike trains fd@lculated as follows:
10 steps before the current time. N
STDP is a learning rule that synaptic weights are y = 1 Z R _
changed by the timing between pre- and post-neuron’s N = li
spikes. In this simulation, we assume that the window func-
tion has a shape of an inverse proportion. The STDP rukehereR is the number of real connections arourtt neu-
of potentiation or depression obeys the following equatiofon’s neighborhood, anigdis the maximum number of con-
with using diferent parameters: nections around-th neuron’s neighborhood. The larger
value ofy means that the more local connections (more
clustering) exist.

N i+D
2jtiip lcij
2" m Q

i=0

Zl -

Bs

WO=YO > Sytrn+Cant-1 @)
n=—Bg,n#0

2.4.3. Group caficient
wherenis the temporal dierence betweejth neuron and ) )
i-th neuron. Synaptic weights are potentiatedrby 0 We propose the group cfigientG which Frage degree
and depressed hy < 0. A is strength of potentiation or ©f clustering at each group of neurons.
depressionB;s is the ranges of the time window of STDP, . .
andC; is the decay parameter at every step@g<1). In G= 1 ZN: & _ 1 ZN: ZﬁiiD(ZLi? Icj + aniﬁ ICjm) 0
STDP,Csis 1 (no decay factor). N4 lg N« 2D? ’

i=0 i=0
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whereRy; is the number of real connections among around. Simulation results

i-th neuron’s neighborhood (group A) and anotimeth )

neuron’s neighborhood (group Bjiis selected so tha; 3.1. Spike patterns

has the maximum valuelg; is the maximum number of Applying the Hebbian rule to both of RG and RM,

connections among group A and B. In this simulation, Wge opserve synchronous firings. Fig.3 shows an example

usedD =5 at ca!culatlngy andG._We consider tha can ¢ spike patterns at RG. Also applying STDP at RG, we

evaluate clustering among spatially separated but strongly a1y observe synchronous firings of some neurons. But

connected neurons. applying STDP at RM, we cannot observe synchronous fir-
ings.
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Figure 2: Graphs of one dimensional circulated neurons ok
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Figure 3: Spike pattern with Hebbian rule on RG

2.5. Initial condition
3.2. Modulation of topology

In this simulation, we assume two initial conditions that  Owing to the synaptic plasticity at RG, the initial
are one-dimensional circulated neurons. One is a regtbpology of regular connections changes. Fig.4(a) and (b)
lar graph (RG) which connects each neuron’s neighboshow the essential connections after application of Hebbian
hood (refer to Fig.2(a)N=16,D=2). Another one is a ran- ryle and STDP, respectlvely. We can see that some of es-
dom graph (RM) which connects two neurons randomlgential connections are dispersed from the initial diagonal
(refer to Fig.2(b),N=16). The number of all neurons is connections and are clustered.

300. Each neuron has random initial potentials distributed After the synaptic plasticity at RM, we can observe the
plainly from O to 80% of the value of. We assume an
average number of connections is 10% in the initial state
for both of RG and RM. Therefor® of RG is 15. We so
assume that initial synaptic weights ang=0.45 at the 100
initial connections. And synaptic weights can change be- _
tween 0000185 to 19 because of synaptic plasticity. We
set 0.000185 for the minimum synaptic weight because we™ |
make a chance to be potentiated even for completely dezo

pressed synaptic weights. 300 00 B ]

A spatiotemporal pattern is repeatedly input as an exter- ° % % n0 0 20 30 R
nal input (pattern A) on a RG. On the other hand, a tempo- (a) Hebb (b) STDP
rally correlational pattern is input (pattern B) on a RM. This
is because stronger correlational patterns will be needeBligure 4: Synaptic change (essential connections) of RG
for the topological change of RM than that of RG. The
pattern A consists of periodic Poisson trains (awf, clusters that run parallel with diagonal line (Fig.5). We
A=5.0, perio&50steps). The pattern B consists of aperieonsider that these parallel clusters are due to the strong
odic Poisson trains (av.ISb0, A=5.0) plus spatiotempo- spatiotemporal correlations in pattern B (Fig.1). The clus-
ral correlations (Fig.1). Each neuron’s parameter is as folers are stronger in Hebbian rule (Fig.5(a)) than those in
lows: 6=12, B=0.95, s=2.73 or —4.0. Parameters of Heb- STDP (Fig.5(b)).
bian rule areA,=0.12, B,=0.05,C,=0.999, and parameters  Fig.6 and Fig.7 show the average and standard deviation
of STDP areAs=10, B=5 with n > 0 (potentiation) and of L, v, andG for 50 trials. In the case of RG, we observe
As=8, Bs=13 withn < 0 (depression). thatL decreases in spite of maintained large valuesarid

0 = 0
50
100
~— 150
200 x 200

250

323



50

100

-— 150

200

250

300

50 §
100
~— 150 §
200 §

250 §

300
50 100 150 200 250 300 0

50 100 150 200 250 300
| I

(a) Hebb (b) STDP

Figure 5: Synaptic change (essential connections) of RM

G. On the other hand, in the case of RM, we observe that
L is kept small. The value of rarely changes. In the case
of RM with Hebbian rule, we can observe tl@aincreases.
Fig.8 shows the relation df andy in the graph construc-
tion model of "Small-World” [6]. Comparing these fig-
ures, we can notice that the topological change by learning
closely traces the-y curve of the "Small-World”.

To summarize, in the case of RG, the result suggests
that the synaptic plasticity changes the network topology in
which each neuron transfers information mofBcgently
with keeping the clustering structures. This may be the
main reason why most of the output spikes become syn-
chronous as the learning proceeds (Fig.3).
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4. Conclusion

In this paper, we study thefect of synaptic plasticity (5]

on the neural network topology by integrate & fire neuron
models. In the case of RG&, decreases in spite of main-
tained large values of andG as the learning proceeds. [6] Duncan J.WattSmall World¢Princeton), 1999
In the case of RM with Hebbian rul& increases whilé

is kept small. These results suggest the synaptic plasticity
change flexibly the network topology so that each neuron
transfers information morefgciently.
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