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Abstract—We propose a new algorithm for controling
packet routing using a neural network. First, we show that
the conventional method for a packet routing control using
a neural network is not so effective when it is applied to
a network with an irregular topology. To overcome this
problem, we modified the method with stochastic effects.
We confirmed that our algorithm is very effective not only
for regular but also for irregular networks.

1. Introduction

Recent years, amount of data flow in computer network
are rapidly increased because of the growth of users and in-
formation. In computer networks, many packets of various
sizes are exchanged, however, they are often deleted and
delayed because of nonstationarity of the network. Thus, it
is important to control the computer networks more effec-
tively.

A packet routing has generally two strategies; a central-
ized control and a decentralized control. The centralized
control is a strategy that a centralized unit controls all pack-
ets routing in the network. The centralized control shows a
good performance in a small-scale network. However, in a
large-scale network, the centralized control does not work
well. If the network size becomes large, the central unit
has huge computational load. Therefore, it is impossible
to control the packets to send their destinations realistically
using the centralized control. On the other hand, the de-
centralized control is more applicable than the centralized
control for the large-scale network because each unit sends
packet autonomously and adaptively.

Various models using the decentralized control have
been proposed. Recently, a new method of packet rout-
ing was proposed by Horiguchi and Ishioka using a neural
network[1] (the NN method). Its effectiveness has been
evaluated on an average number of packets arrived at the
objective node and discarded at their objective node. The
NN method shows good performance for a network with
a regular topology. However, effectives of the NN method
for an irregular topological network is not yet clarified. In
general, real networks have an irregular topology. Then,
we first confirmed its effectiveness for an irregular topolog-
ical network by comparing with Dijkstra algorithm[2]. As
a result, the NN method shows poor performance because

of nonuniform distributions of packets. To overcome this
problem, we proposed a modified model of the NN method
which introduces stochastic effects. We evaluated if effec-
tiveness by computer simulations.

2. Model of a computer network

The computer network consists of nodes and links (or
connections). Each packet is sent from a node to a node
through links. A packet can be sent at the nodes and mul-
tiple packets can be received simultaneously. Every node
has a buffer which stores some of packets and every packet
is sent according to First In First Out control. The packet
sent to a node is deleted when the buffer of the node is full.
Moreover, every packet has an upper limit of packet move-
ment. Thus, every packet is deleted if it exceeds this limit.

3. Link selection

In the decentralized control, each node selects the opti-
mum adjacent node autonomously to send the packet to the
objective node. To achieve this optimum selection, each
node uses, for example, the distance from node to the ob-
jective node or amount of packets in the adjacent nodes.
We call this selection a link selection. In other words, the
packet routing by the decentralized control is an integral of
the link selections.

4. Routing method using a neural network

Horiguchi and Ishioka proposed a method for a packet
roting that employs neural networks on link selections[1].
In this method, a network has N nodes and the i-th node had
Ni adjacent nodes. Then, Ni neurons are assigned to each
node, and the il-th neuron corresponds to the connection
between adjacent nodes (l = 1, . . . ,Ni). The neurons are
fully connected each other. Moreover, the variable vil (0 ≤
vil ≤ 1) is designated as an output of the il-th neuron, the
il-th neuron is adjacent to the i-th node. If vil = 1 (the il-th
neuron fires), the packet at the node i is sent to the node l.

To minimize the number of packets stayed at each node,
to reduce the distance to the objective node of a packet and
to make only one neuron fire at each node, we defined the
following function E:
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where Jik,il is a connection weight between the ik-th neuron
and the il-th neuron; η is a control parameter which changes
priority of the second and third term; bl is a buffer size
of node l; ql is a number of packets in the buffer of node
l; dl is the shortest distance from node l to an objective
node; dc is a control parameter which expressed the size of
the computer network; and ξ is a control parameter which
guarantees uniqueness of link selection.

In Eq.(1), the first term expresses inhibition of sending
packets. The second term expresses the loads of the ad-
jacent nodes. The third term expresses the distance from
node i to the objective node of a ready-to-go-out packet at
node i. The last term expressed a single neuron firing at
each node.

We assume that node l is an optimum node in Eq.(1). In
other words, node l is closest to the objective node from
node i and node l has a small number of packets. In Eq.(1),
E decreases if and only if vil gets close to 1. Therefore,
every node selects a link optimally if the state of the neural
network changes as the energy function E decreases.

We changed the internal state of the neural network in a
similar way as Hopfield and Tank[3], then the output of a
neuron vil is written in the following. We first introduced
a new variable hil which expresses the state of the neuron
defined as follows.

vil =
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The variable of hil is changed when node i is adjacent to
node l.
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We obtain Eq.(3) by differentiating E partially with re-

spect to vil. Then, Eq.(3) is equivalent to
∂E
∂vil

. Also, from

Eq.(2), we obtain,

Figure 1: A regular network.

Figure 2: A irregular network.
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Eq.(5) indicates that the energy function E decreases
when hil changes according to Eq.(3). The energy function
Eq.(1) decreases by the method of steepest descent.

5. The problems of the NN method and its modification

Performance of the NN method, as described in sec-
tion 4, is examined with a regular network in which all
nodes are allocated in a rectangular pattern by computer
simulations[1]. However, a real network has an irregular
topology. Thus, it is significant to verify the effectiveness
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of the NN method for the real network. We are also inter-
ested in how the performance would be if the topology of
the network changes from a regular to a random one. More-
over, the basic strategy of the NN method[1] is based on
link selections optimally by balancing the shortest distance
of an objective node and congestion of adjacent nodes.

To set the lengths of a link between adjacent nodes to
the quantity of packets in adjacent node, we also proposed
the routing method using Dijkstra algorithm[2], which is
one of the standard algorithm for solving the shortest path
problem.

In this paper, we first confirmed the efficiency of the NN
method for some different networks, one is a regular and
another is an irregular network, comparing with the Dijk-
stra method and the NN method.

The regular and irregular networks are shown in Figs.1
and 2. The network shown in Fig.1 is used in Ref.[1]. We
conducted computer simulations of packet routing in the
following procedures.

First, we generated packets randomly at all nodes in the
network using uniformly distributed random numbers; each
packet has an objective node and the objective nodes as-
signed randomly using uniformly distributed random num-
bers. Next, the link selection is simultaneously conducted
at every node and a packet is sent to the adjacent node. A
packet sent from the node was stored at the tail of the buffer
of the adjacent node. We set a buffer size bl = 200 and a
constraint for packet movement to 20. A packet is deleted
when the packet exceeds these constraints.

We repeated this motion link selection and packet send-
ing for 10,000 iterations. We fixed the total number of
packets in the network. We added a new packet when a
packet was deleted. A new packet is generated at a node
and its objective node is randomly decided using uniformly
random numbers.

We explain the link selection of the NN method. First,
the variable hil is converged to a steady value by solving
Eq.(3) using Euler’s method. In the Euler’s method, we set
the number of iterations 50 with step size 1. Then, vil is
computed by Eq.(2) and a packet in node i is sent to node l
if vil is larger than the threshold θ; we choose θ = 0.9. We
set β = 3.0 and η = 0.2,0.6, 0.8, 0.9 and ξ = 0.3. We also
set dc as an average longest path length.

The Dijkstra algorithm searches the shortest path from a
node to the other nodes in a nonnegative directed graph[2].
In this paper, we set the lengths of links connecting to
the adjacent node the amount of packets in the adjacent
node. Moreover, we set the lengths of links from adjacent
nodes to other node to 1. We updated the lengths of links
at each iteration and searched the shortest paths from the
node to the other nodes using Dijkstra algorithm because
the lengths of links to adjacent node is set by amount of
packets in its node. Then, a packet is sent to the adjacent
node which is on the shortest path.

We described an average number of packets at each node
by Np, and an average number of packets arrived at their

 0

 0.2

 0.4

 0.6

 0.8

 1

 180 150 120 90 60 30

Dijkstra
PSfrag replacements

A

Np

η = 0.2
η = 0.6
η = 0.7
η = 0.8
η = 0.9

Figure 3: An average number of packets arrived at their
objective node in the regular network.

objective node by A:

A =
Na

Ng
, (6)

D =
Ndp

Ng
, (7)

where Ntp is the total number of packets in the network
at a certain moment; Na is the number of packets which
have arrived at their objective node; Ng is the number of all
packets generated in the network.

Results for the regular and irregular networks are shown
in Fig.3 and 4, respectively. In the case of the regular net-
work, the NN method (except cases of η = 0.2 and η = 0.9)
and the Dijkstra method exhibits high average number of
arrived packets, even Np is large. The NN method with
η = 0.8 shows the most optimum solution in the regular
network (Fig.3). However, for the irregular network, the
performance of the NN method exhibits worse than the Di-
jkstra model. In addition, the value of A rapidly decreased
when Np is high (Fig.4). These results indicates that the
NN method has poor performance if the network topology
is irregular.

6. Proposed method

In previous section, we clarified that the NN method has
poor performance for the irregular network. We consider
the reason as follows. In the irregular network, packets
are sent intensively to a particular node frequently. If the
number of packets exceeds the size of buffer the node, the
overflowed packets are deleted. Moreover, in the irregular
network, some nodes sometimes make a loop. If a packet
is trapped to the loop, escape from the loop is difficult be-
cause there is no optimum adjacent node. So, the packet
will be dead.

To avoid the death of the packet, we modified the NN
method. In the conventional method, an optimum adjacent
nod, to which the packet is sent, is determined by a de-
terministic rule. We introduced a stochastic effect to the
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Figure 4: An average number of packets arrived at their
objective node in the irregular network.

determination. We changed the variable η in Eq.(1) ran-
domly using uniformly distributed random numbers. This
modification implies that the priority between the shortest
distance of the packets to the objective node and decen-
tralization of loads of the adjacent nodes is changed ran-
domly when the node selects the adjacent node. Therefore,
it is expected to avoid the packets sent to a particular node.
We call the conventional method NNc and the modified one
NNm

We evaluate the NNm, the NNc and the Dijkstra algo-
rithm for the irregular network (the network structure is
shown in Fig.2). Moreover, we also evaluated these meth-
ods for randomized networks. The randomized networks
are generated in a similar way as Watts and Strogatz[4].
Starting from the regular network as shown Fig.1, we
rewired each link at random with a probability p (0 ≤ p ≤
1). We also introduced a constraint that each link cannot
be connected to a further node beyond three links. This
construction allows us to tune the network between regular
(p = 0) and disorder (p = 1).

We set the variable of η = 0.8 in Eq.(3) for the NNc

and we change η for the NNm randomly between 0.1 and
0.9. In these simulations, we used the same experimental
assumption in section 5. We evaluated these methods by
an average number of packets arrived at the objective node
(A) for the irregular network as shown in Fig.5. The results
indicates that the NNm exhibits high performance when Np

increases. The NNm is the best for every Np.
We also show the average number of packets of NNc,

NNm and the Dijkstra methods for the randomized net-
works in Fig.6. In this simulation, we set Np = 50 for
every p. In Fig.6, the three models show high performance
when p is small. However, the performance of the Dijkstra
algorithm and NNc becomes low when p is large. On the
other hand, the performance of the NNm keeps high perfor-
mance.

From these results, the NNm has higher average number
of packets arrived at the objective node for the regular and
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Figure 5: An average number of packets arrived at their
objective node in the randomized networks.

irregular network.

7. Conclusions

In this paper, we proposed a modified method for packet
routing by a neural network. We introduced the stochas-
tic effects; a random selection for the priority between the
shortest distance of the packet to the objective node and
decentralization of loads of the adjacent nodes. By the
stochastic effects, the proposed method shows high perfor-
mance comparing to the conventional method when the net-
work structure changes from regular to irregular one. The
research of TI is partially supported by Grant-in-Aid for
Scientific Research (B) from JSPS ( No.16300072)
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