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Abstract—In this paper1, we shall describe about a re-
fined theory based on the concept of set-valued operators,
suitable for available operation of extremely complicated
large-scale network systems. Fundamental conditions for
availability of system behaviors of such network systems
are clarified in a form of fixed point theorem for system of
set-valued operators.

1. Introduction

In extremely complicated large-scale network systems,
precise evaluation and perfect control, and also ideal op-
eration, of overall system behaviors cannot be necessarily
expected by using any type of commonplace technologies
for maintenance, which might be accomplished by simple
measure in usual hierarchical network structures.

In order to effectively evaluate, control and maintain
those complicated large-scale networks, as a whole, the
author has recommended to introduce some connected-
block structure:i.e., whole networks might be separated
into several blocks which are carefully self-evaluated, self-
controlled and self-maintained by themselves, and so,
which are originally self-sustained systems. However, by
always carefully watching each other, whenever they ob-
serve and detect that some other block is in ill-condition
by some accidents, every block can repair and sustain that
ill-conditioned block, through inter-block connections, at
once. This style of maintenance of system is sometimes
called as locally autonomous, but the author recommends
that only the ultimate responsibility on observation and reg-
ulation of whole system might be left for headquarter itself,
which is organized over all blocks just as United States
Government [1].

Here, let us consider complete metric linear spaces
Xi (i = 1, · · · ,n) andYj ( j = 1, · · · ,n), and their bounded
convex closed subsetsX(0)

i and Y(0)
j , respectively, corre-

sponding to each block,Bi andBj of whole network sys-
tem. Let us introduce operatorsfi j : Xi → Yj such that
fi j (X

(0)
i ) ⊂ Y(0)

j and letfi j be completely continuous onX(0)
i .

For general situations of mutual connections between
blocks, by newly introducingn composition-type operators
gi : Xi × Πn

j Yj × ΠnYi → Xi , whereΠn
j Yj means the direct

1The LATEX-description of manuscript is made by Dr. K. Maruyama,
Visiting Lecturer, Waseda University.

product ofn Yj ’s for all j ∈ {1, · · · ,n}, andΠnYi means the
direct product ofn Yi ’s for fixed i, we have a general system
of operator equations:

xi = gi(xi ; fi1(xi), · · · , fin(xi); f1i(x1), · · · , fni(xn)),
(i = 1, · · · ,n).

(1)

Here, we can present a fixed point theorem for this gen-
eral system of nonlinear operator equations [2], which is an
extension of the work by Melvin [3].

However, the fluctuation imposed on the actual system
is nondeterministic rather than deterministic. In this case,
even the effect due to a single cause is multi-valued, and the
behavior is more naturally represented by a set of points,
rather than a single point.

Therefore, it is reasonable to consider some suitable-
subset of the range of system behavior, in place of single
ideal point, as target which the behavior must reach under
influence of system control. Now, we can name it as an
“available range” or a “tolerable range” of the system be-
havior. Thus, by the available or tolerable range, we mean
the range of behavior, in which every behavior effectively
satisfies good conditions beforehand specified, as a set of
ideal behaviors. From such a point of view, the theory
for fluctuation imposed on the system should be developed
concerning the set-valued operator.

By the set-valued operatorG defined on a spaceX is
meant a correspondence in which a setG(x) is specified in
correspondence to any pointx in X. In particular, when
G(X) ⊂ X, and if there exists a pointx∗ such thatx∗ ∈
G(x∗), x∗ is called a fixed point ofG.

The author has given a series of studies on set-valued
operators in functional analysis aspects, and has vigorously
applied it to analysis of uncertain fluctuations of network
systems [4], [5].

Recently, the author gave a general type of fixed point
theorem for the system of set-valued operator equations, in
order to treat with extremely complicated large-scale net-
work systems [6].

Namely, let us introducen set-valued operatorsGi : Xi ×
Πn

j Yj × ΠnYi → F (Xi) (the family of all non-empty closed
compact subsets ofXi) (i = 1, · · · ,n), whereΠn

j Yj means
the direct product ofn Yj ’s, for any j ∈ {1, · · · ,n}, andΠnYi

means direct product ofn Yi ’s, for fixed i.
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Under some natural conditions, the author presented an
important fixed point theorem on the system of set-valued
operator equations:

xi ∈ Gi(xi ; fi1(xi), · · · , fin(xi); f1i(x1), · · · , fni(xn)),
(i = 1, · · · ,n).

(2)

2. A Refined Fixed Point Theorem For System of Set-
Valued Operators

Here, we will present a refined theory of the fixed point
theorem for such a general system of set-valued operator
equations.

For the first step, let us introduce reflexive, or uniformly
convex, real Banach spacesXi (i = 1, · · · ,n), in which
the norm is represented by‖ · ‖, and also their non-empty
bounded closed convex subsetsX(0)

i (i = 1, · · · , n). Let X
′

i
be the dual space ofXi and let us introduce a weak topol-
ogyσ(Xi ,X

′

i ) into Xi . Then,Xi is locally convex topolog-
ical linear space, and therefore,X(0)

i is weakly closed and
weakly compact. Further, let us consider another real Ba-
nach spacesYj ( j = 1, · · · ,n) in which the norm is repre-
sented by‖ · ‖ [7].

Now, let us introduce a series of assumptions:

Assumption 1 Let the operator fi j : X(0)
i → fi j (X

(0)
i ) ⊂ Yj

be completely continuous in the sense that when a weakly
convergent net{xνi } (ν ∈ J: a directive set) weakly con-
verges tox̄i , then the sequence{ fi j (xνi )} has a subsequence
which strongly converges to fi j (x̄i) in Yj .

Assumption 2 Let the set-valued operator Gi : X(0)
i ×∏n

j Yj ×
∏n Yj → F (Xi) (a family of all non-empty closed

compact subset of Xi) satisfies the following Lipschitz con-
dition with respect to the Hausdorff distance dH: that is,
there are three kinds of constants0 < ai < 1 and bji > 0,
c ji > 0 such that for any x(1)

i , x
(2)
i ∈ Xi , for any y(1)

ji , y
(2)
ji ∈ Yi ,

and for any y(1)
i j , y

(2)
i j ∈ Yj , Gi ’s satisfy inequalities:

dH(Gi(x
(1)
i ; y(1)

i1 , · · · , y
(1)
in ; y(1)

1i , · · · , y
(1)
ni ),

Gi(x
(2)
i ; y(2)

i1 , · · · , y
(2)
in ; y(2)

1i , · · · , y
(2)
ni ))

≤ ai · ‖x(1)
i − x(2)

i ‖ +
∑n

j=1 b ji · ‖y(1)
i j − y(2)

i j ‖
+
∑n

j=1 c ji · ‖y(1)
ji − y(2)

ji ‖, (i = 1, · · · ,n).

(3)

Here, the Hausdorff distancedH between two setsS1 and
S2 is defined by

dH(S1,S2)
4
= max{sup{d(x1,S2)|x1 ∈ S1},

sup{d(x2,S1)|x2 ∈ S2}},

whered(x,S)
4
= inf {‖x− y‖ | y ∈ S} is the distance between

a pointx and a setS.

Assumption 3 For any xi ∈ X(0)
i and yi j

4
= fi j (xi),

y ji
4
= f ji (x j), G(0)

i (xi ; yi1, · · · , yin; y1i , · · · , yni)
4
=

Gi(xi ; yi1, · · · , yin; y1i , · · · , yni) ∩ X(0)
i , φ. Moreover, there

exist projection points̃xi
′
of arbitrary point x

′

i upon the set
Gi(xi ; yi1, · · · , yin; y1i , · · · , yni) such that

‖x̃i
′ − x

′

i ‖
= min{‖x′i − zi‖ | zi ∈ Gi(xi ; yi1, · · · , yin; y1i , · · · , yni)}.

(4)

Then, we have an important lemma:

Lemma 1 For all i (i = 1, · · · , n), let us adopt arbi-
trary points xi ≡ z(0)

i ∈ X(0)
i and also fix all values of

fi j (z
(0)
i ) and fji (z

(0)
j ), ( j = 1, · · · ,n). Now, for every i,

let us introduce a sequence{zk
i } (k = 0,1,2, · · ·), start-

ing from the above-adopted point z(0)
i , and with each zki ∈

X(0)
i as a projection point of zk−1

i ∈ X(0)
i upon the set

Gi(zk−1
i ; fi1(z(0)

i ), · · · , fin(z(0)
i ); f1i(z

(0)
1 ), · · · , fni(z

(0)
n )). Then,

this sequence{zk
i } (k = 0,1,2, · · ·) is a Cauchy sequence,

having its own limit points̄zi ∈ X(0)
i , such that

z̄i ∈ G(0)
i (z̄i ; fi1(z(0)

i ), · · · , fin(z(0)
i ); f1i(z

(0)
1 ), · · · , fni(z

(0)
n ),

(i = 1, · · · ,n) .
(5)

(Proof is in Appendix A.)

Here, the correspondence from the starting pointz(0)
i ≡

xi ∈ X(0)
i to the limit pointsz̄i ∈ X(0)

i is multivalued, in
general, and hence, by this correspondence we can define
a set-valued operatorHi : xi → {z̄i} in Xi ; i.e., z̄i ∈ Hi(xi).
If this set-valued operatorHi has a fixed pointx∗i : i.e., x∗i ∈
Hi(x∗i ), then it satisfies the system of equations:

x∗i ∈ G(0)
i (x∗i ; fi1(x∗i ), · · · , fin(x∗i ); f1i(x∗1), · · · , fni(x∗n)),

(i = 1, · · · ,n)
(6)

by Eq. (5). Therefore,x∗i is the solution of the system of
set-valued operator equations (2).

Now, let us refer to the well-known fixed point theorem
for set-valued operator:

Lemma 2 (Ky Fan [8]) Let Xi be a locally convex topo-
logica linear space, and X(0)

i be a non-empty convex com-

pact subset of Xi . LetHc(X
(0)
i ) be the family of all non-

empty closed convex subset of X(0)
i . Then, for any upper

semicontinuous set-valued operator Hi : X(0)
i → Hc(X

(0)
i ),

there exists a fixed point x∗i ∈ X(0)
i such that x∗i ∈ Hi(x∗i ).

In order to apply this lemma to our problem, we must
verify that the above-defined set-valued operatorHi(xi) is
upper semicontinuous, and its range is closed and convex.

In the first place, the closedness of the range ofHi(xi)
is easily verified from the assumption 2. (Proof is in Ap-
pendix B.)

For the verification of the convexity, it is sufficient to add
the following assumption:
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Assumption 4 (Rockafellar [9]) For any x(1)
i , x

(2)
i , ∈ X(0)

i ,
and for any constant r(0 < r < 1), uniformly with respect
to every yi j ∈ Yj and yji ∈ Yi , Gi satisfies the relation:

r ·Gi(x
(1)
i ; yi1, · · · , yin; y1i , · · · , yni)

+(1− r) ·Gi(x
(2)
i ; yi1, · · · , yin; y1i , · · · , yni)

⊂ Gi(r · x(1)
i + (1− r) · x(2)

i ; yi1, · · · , yin; y1i , · · · , yni) .
(7)

In fact, under the assumption 4, we have

r · z(1)
i + (1− r) · z(2)

i ∈ r ·Gi(z
(1)
i ; yi1, · · · , yin; y1i , · · · , yni)

+(1− r) ·Gi(z
(2)
i ; yi1, · · · , yin; y1i , · · · , yni)

⊂ Gi(r · z(1)
i + (1− r) · z(2)

i ; yi1, · · · , yin; y1i , · · · , yni),
(8)

for any z(ν)
i ∈ Hi(xi) (ν = 1,2) : i.e., for any z(ν)

i ∈
Gi(z

(ν)
i ; fi1(xi), · · · , fin(xi); f1i(x1), · · · , fni(xn)) (ν = 1,2).

This relation means the convexity ofHi(xi).
Lastly, in order to verify the upper semicontinuity, we

should prove that if an arbitrary weakly convergent net
{xνi }(ν ∈ J) in X(0)

i weakly converges to ¯xi and if the weakly
convergent net{zνi } (ν ∈ J) in X(0)

i made fromzνi ∈ Hi(xνi )
weakly converges to ¯zi , we have ¯zi ∈ Hi(x̄i). For this pur-
pose, we can use the following lemma:

Lemma 3 (Nadler [10]) Let Xi be complete metric space,
and let Fνi (ν ∈ J) andF̄i : Xi → Fc(Xi) (the family of all
non-empty closed compact subsets of Xi) be set-valued op-
erators contracting with respect to the Hausdorff distance
dH: e.g., there exists a constant ai (0 < ai < 1) such that
for any z(1)

i , z
(2)
i ∈ Xi , Fνi satisfies the inequality

dH(Fνi (z(1)
i ), Fνi (z(2)

i )) ≤ ai · ‖z(1)
i − z(2)

i ‖ . (9)

Now, let{Fνi } be uniformly convergent tōFi in the distance
dH. Let zνi be a fixed point of Fνi . Then, we can find that the
sequence{zνi } (ν ∈ J) has a convergent subsequence{zνmi }
and its limit pointz̄

′

i is a fixed point ofF̄i : z̄
′

i ∈ F̄i(z̄
′

i ).

From the assumption 1, we remember that when any
weakly convergent net{xνi } (ν ∈ J) weakly converges to ¯xi ,
the net{ fi j (xνi )} has a subsequence{ fi j (xνmi )} strongly con-
vergent tofi j (x̄i). On the other hand, from the assumption
2, we have

supxi∈Xi
dH(Gi(xi ; fi1(xνmi ), · · · , fin(xνmi );

f1i(xνm1 ), · · · , fni(xνmn )),
Gi(xi ; fi1(x̄i), · · · , fin(x̄i); f1i(x̄1), · · · , fni(x̄n))
≤ ∑n

j=1 b ji ‖ fi j (xνmi ) − fi j (x̄i)‖
+
∑n

j=1 c ji ‖ f ji (xνmj ) − f ji (x̄ j)‖ → 0.

(10)

This implies that the sequence of the set-valued opera-
tors

{Gi(xi ; fi1(xνmi ), · · · , fin(xνmi ); f1i(x
νm
1 ), · · · , fni(x

νm
n ))}

uniformly converges to

Gi(xi ; fi1(x̄i), · · · , fin(x̄i); f1i(x̄1), · · · , fni(x̄n))

in the distancedH. Thus, from this deduction, substituting
Fνi , F

νm
i andF̄i by

Gi(zi ; fi1(xνi ), · · · , fin(xνi ); f1i(xν1), · · · , fni(xνn)),
Gi(zi ; fi1(xνmi ), · · · , fin(xνmi ); f1i(xνm1 ), · · · , fni(xνmn ))

and

Gi(zi ; fi1(x̄i), · · · , fin(x̄i); f1i(x̄1), · · · , fni(x̄n)),

respectively, we can apply the Lemma 3, and hence, we
find that the sequence of fixed points

{z̄νmi } : z̄νmi ∈ Gi(z̄νmi ; fi1(xνmi ), · · · , fin(xνmi );
f1i(xνm1 ), · · · , fni(xνmn )),

i.e., z̄νmi ∈ Hi(xνmi ), strongly, and therefore, weakly con-
verges to the fixed point

z̄
′

i : z̄
′

i ∈ Gi(z̄
′

i ; fi1(x̄i), · · · , fin(x̄i); f1i(x̄1), · · · , fni(x̄n)),

i.e., z̄
′

i ∈ Hi(x̄i).
As a result, we have a theorem:

Theorem 1 Let Xi be a reflexive, or uniformly convex, real
Banach space, and X(0)

i be a non-empty bounded closed
convex subset of Xi . By the dual space X

′

i , let us intro-
duce a weak topologyσ(Xi ,X

′

i ) into Xi . Let fi j and Gi be
deterministic and set-valued operators, respectively, which
satisfy the series of assumptions 1 to 4. Then, we have a
Cauchy sequence{zk

i } ⊂ X(0)
i (k = 0, 1,2, · · ·), introduced

by the succesive procedure in Lemma 1. This sequence has
a set of limit points{z̄i}, and we can define a set-valued op-
erator Hi by the correspondence from the arbitrary start-
ing point z(0)

i ≡ xi ∈ X(0)
i to the set of limit points{z̄i} in

X(0)
i : z̄i ∈ Hi(xi). This set-valued operator Hi has a fixed

point x∗ in X(0)
i , which is, in turn, the solution of the system

of set-valued operator equations (2).
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Appendix

A. The Cauchy Sequence{zk
i } and Its Limit Point z̄i

For any integersk ≥ 0 and j ≥ 0 (k+ j ≥ 1), we have

‖zk+ j
i − zk+ j+1

i ‖
≡ d(zk+ j

i ,G
(0)
i (zk+ j

i ; fi1(z(0)
i ), · · · , fin(z(0)

i );
f1i(z

(0)
1 ), · · · , fni(z

(0)
n )))

≤ dH(G(0)
i (zk+ j−1

i ; fi1(z(0)
i ), · · · , fin(z(0)

i );
f1i(z

(0)
1 ), · · · , fni(z

(0)
n ),

G(0)
i (zk+ j

i ; fi1(z(0)
i ), · · · , fin(z(0)

i );
f1i(z

(0)
1 ), · · · , fni(z

(0)
n )))

≤ ai · ‖zk+ j−1
i − zk+ j

i ‖
· · ·
≤ ak+ j

i · ‖z(0)
i − z1

i ‖ .
Therefore, for anyk ≥ 0 andm≥ 0, we find

‖zk
i − zk+m

i ‖ ≤ ∑m−1
j=0 ‖z

k+ j
i − zk+ j+1

i ‖
≤ ‖z(0)

i − z1
i ‖ ·
∑m−1

j=0 ak+ j
i

≤ ‖z(0)
i − z1

i ‖ ·
∑∞

j=0 ak+ j
i

= ak
i · (1− ai)−1 · ‖z(0)

i − z1
i ‖ .

Hence,‖zk
i − zk+m

i ‖ → 0, ask → +∞, i.e., the sequence
{zk

i } is a Cauchy sequence. SinceXi is complete andX(0)
i is

closed,{zk
i } has at least one limit point ¯zi ∈ X(0)

i .
Now, let us consider a projection point ˆzi of zk+1

i upon
G(0)

i (z̄i ; fi1(z(0)
i ), · · · , fin(z(0)

i ); f1i(z
(0)
1 ), · · · , fni(z

(0)
n )). Then,

we have

d(z̄i ,G
(0)
i (z̄i ; fi1(z(0)

i ), · · · , fin(z(0)
i ); f1i(z

(0)
1 ), · · · , fni(z

(0)
n )))

≤ ‖z̄i − ẑi‖
≤ ‖z̄i − zk

i ‖ + ‖zk
i − zk+1

i ‖ + ‖zk+1
i − ẑi‖ .

On the other hand, we see

‖zk+1
i − ẑi‖
≡ d(zk+1

i ,G
(0)
i (z̄i ; fi1(z(0)

i ), · · · , fin(z(0)
i );

f1i(z
(0)
1 ), · · · , fni(z

(0)
n )))

≤ dH(G(0)
i (zk

i ; fi1(z(0)
i ), · · · , fin(z(0)

i ); f1i(z
(0)
1 ), · · · , fni(z

(0)
n )),

G(0)
i (z̄i ; fi1(z(0)

i ), · · · , fin(z(0)
i ); f1i(z

(0)
1 ), · · · , fni(z

(0)
n )))

≤ ai · ‖zk
i − z̄i‖ .

Therefore, we have

d(z̄i ,G
(0)
i (z̄i ; fi1(z(0)

i ), · · · , fin(z(0)
i ); f1i(z

(0)
1 ), · · · , fni(z

(0)
n )))

≤ (1+ ai) · ‖zk
i − z̄i‖ + ‖zk

i − zk+1
i ‖ → 0 ,

as k → ∞. Since the left-hand side is independent of
k,d(z̄i ,G

(0)
i (z̄i ; fi1(z(0)

i ), · · · , fin(z(0)
i ); f1i(z

(0)
1 ), · · · , fni(z

(0)
n ))) ≡

0, and so, we have the relation (5).

B. Closedness of the Range ofHi(xi)

Let us consider a sequence{zk
i } (k = 0,1,2, · · ·) such that

zk
i ∈ Hi(xi), i.e.,

zk
i ∈ G(0)

i (zk
i ; fi1(z(0)

i ), · · · , fin(z(0)
i ); f1i(z

(0)
1 ), · · · , fni(z

(0)
1 ))

and let it strongly converge to a limit point ¯zi .
Then, we have

d(zk
i ,G

(0)
i (z̄i ; fi1(z(0)

i ), · · · , fin(z(0)
i ); f1i(z

(0)
1 ), · · · , fni(z

(0)
n )))

4
= inf {‖zk

i − zi‖ | zi ∈ G(0)
i (z̄i ; fi1(z(0)

i ), · · · , fin(z(0)
i );

f1i(z
(0)
1 ), · · · , fni(z

(0)
n ))}

≤ dH(G(0)
i (zk

i ; fi1(z(0)
i ), · · · , fin(z(0)

i );
f1i(z

(0)
1 ), · · · , fni(z

(0)
n )),G(0)

i (z̄i ; fi1(z(0)
i ), · · · , fin(z(0)

i );
f1i(z

(0)
1 ), · · · , fni(z

(0)
n )))

≤ ai · ‖zk
i − z̄i‖ .

Now, let ẑi be a projection point, inX(0)
i , of zk

i upon the set
G(0)

i (z̄i ; fi1(z(0)
i ), · · · , fin(z(0)

i ); f1i(z
(0)
1 ), · · · , fni(z

(0)
n )). Then,

we find

d(z̄i ,G
(0)
i (z̄i ; fi1(z(0)

i ), · · · , fin(z(0)
i ); f1i(z

(0)
1 ), · · · , fni(z

(0)
n )))

≤ ‖z̄i − ẑi‖
≤ ‖z̄i − zk

i ‖ + ‖zk
i − ẑi‖

≤ ‖z̄i − zk
i ‖ + d(zk

i ,G
(0)
i (z̄i ; fi1(z(0)

i ), · · · , fin(z(0)
i );

f1i(z
(0)
1 ), · · · , fni(z

(0)
n )))

≤ ‖z̄i − zk
i ‖ + ai · ‖zk

i − z̄i‖
= (1+ ai) · ‖zk

i − z̄i‖ → 0 .

ask→ 0. Hence,

d(z̄i ,G
(0)
i (z̄i ; fi1(z(0)

i ), · · · , fin(z(0)
i ); f1i(z

(0)
1 ), · · · , fni(z

(0)
n ))) ≡ 0,

and so,

z̄i ∈ Gi(z̄i ; fi1(z(0)
i ), · · · , fin(z(0)

i ); f1i(z
(0)
1 ), · · · , fni(z

(0)
n )),

which is equivalent to ¯zi ∈ Hi(xi) .
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