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Abstract—In this paper, we shall describe about a re- product ofn Yj's for all j € {1,---,n}, andII"Y; means the
fined theory based on the concept of set-valued operatoditect product oh Y;'s for fixedi, we have a general system
suitable for available operation of extremely complicatedf operator equations:
large-scale network systems. Fundamental conditions for
availability of system behaviors of such network systems x = gi(X; fit(X), -, fin(X); fu(Xa), - - -, fi(Xn)),
are clarified in a form of fixed point theorem for system of (i=1--,n).
set-valued operators.

1)

Here, we can present a fixed point theorem for this gen-
1. Introduction eral sy'_stem of nonlinear operqtor equations [2], which is an
extension of the work by Melvin [3].

In extremely complicated large-scale network systems, However, the fluctuation imposed on the actual system
precise evaluation and perfect control, and also ideal ofs nondeterministic rather than deterministic. In this case,
eration, of overall system behaviors cannot be necessaridyen the &ect due to a single cause is multi-valued, and the
expected by using any type of commonplace technologidshavior is more naturally represented by a set of points,
for maintenance, which might be accomplished by simpleather than a single point.
measure in usual hierarchical network structures. Therefore, it is reasonable to consider some suitable-

In order to dfectively evaluate, control and maintainsubset of the range of system behavior, in place of single
those complicated large-scale networks, as a whole, tigeal point, as target which the behavior must reach under
author has recommended to introduce some connectédfluence of system control. Now, we can name it as an
block structure:i.e., whole networks might be separated‘available range” or a “tolerable range” of the system be-
into several blocks which are carefully self-evaluated, seltiavior. Thus, by the available or tolerable range, we mean
controlled and self-maintained by themselves, and sthe range of behavior, in which every behavidiieetively
which are originally self-sustained systems. However, bygatisfies good conditions beforehand specified, as a set of
always carefully watching each other, whenever they olideal behaviors. From such a point of view, the theory
serve and detect that some other block is in ill-conditiofor fluctuation imposed on the system should be developed
by some accidents, every block can repair and sustain th@incerning the set-valued operator.
ill-conditioned block, through inter-block connections, at By the set-valued operat@® defined on a spacX is
once. This style of maintenance of system is sometimegeant a correspondence in which a@éx) is specified in
called as locally autonomous, but the author recommen@grrespondence to any poirtin X. In particular, when
that only the ultimate responsibility on observation and regs(X) c X, and if there exists a point* such thatx* e
ulation of whole system might be left for headquarter itselfG(x*), x* is called a fixed point o6.
which is organized over all blocks just as United States The author has given a series of studies on set-valued
Government [1]. operators in functional analysis aspects, and has vigorously

Here, let us consider complete metric linear spacegyplied it to analysis of uncertain fluctuations of network
X (i=1---,nandYj (j =1,---,n), and their bounded gystems [4], [5].
convex closed subsets® and Y\, respectively, corre- Recently, the author gave a general type of fixed point
sponding to each blockB; and B; of whole network sys- theorem for the system of set-valued operator equations, in
tem. Let us introduce operatofg : Xi — Yj such that order to treat with extremely complicated large-scale net-
fij (Xi(o)) c Yj(o) and letf;; be completely continuous Oq(o). work systems [6].

For general situations of mutual connections between Namely, let us introduce set-valued operatof3; : X; x
blocks, by newly introducing composition-type operators mY; x I"Y; — 7 (%) (the family of all non-empty closed
g Xi x II7Y; x TI"Y; — X, wherell7Y; means the direct compact subsets of) (i = 1,---,n), wherell]Y; means

1The KTEX-description of manuscript is made by Dr. K. Maruyama, the direct product ofi Yj's, forany j € {1,---,n}, andI"y;
Visiting Lecturer, Waseda University. means direct product af Y;'s, for fixedi.
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Under some natural conditions, the author presented awist projection points;” of arbitrary point X upon the set
important fixed point theorem on the system of set-value@;(x;; Vi1, - - -, Yin; Y1, - - - » Yni) Such that
operator equations:

1% = x|l
% € Gi(x; fin(%), -+ fin(x); fai(Xa), - -, Fai (%)), @) =min{lIX =zl 1z € Gi(X; Yit - +» Yin Yais - +» Yni))-
(i=1,---,n). (4)
2. A Refined Fixed Point Theorem For System of Set- Then, we have an important lemma:
Valued Operators
Lemmal Foralli (i = 1,---,n), let us adopt arbi-

Here, we will present a refined theory of the fixed pointrary points x = ;.(0) € Xi(o) and also fix all values of
theorgm for such a general system of set-valued operathJJr(ZIKO)) and fji(zgo)), (j = 1---,n). Now, for every i,
equations. . . . let us introduce a sequende} (k = 0,1,2,--), start-

For the first step, let us introduce reflexive, or unlformlyin from the above-adopted oirff)) and with each% ¢
convex, real Banach spaces (i = 1,---,n), in which (%) o p P N ¢ ©) i
the norm is represented by ||, and also their non-empty %~ @S prOOJECt'O” p0|g1t of iz N X upon the set
bounded closed convex subsé(@) (i=1--,n). LetX Gi(Z°%; fil(Z-( M, fin(é( ; fli(z(l D), -+, fai(@Y). Then,
be the dual space of and let us introduce a weak topol- this sequencéz} (k = 0,1,2,---) is a Cauchy sequence,
ogy o(X;, X) into X;. Then,X; is locally convex topolog- having its own limit pointg € X, such that
ical linear space, and therefor)éi(,o) is weakly closed and
weakly compact. Further, let us consider another real Ba- z € GO@; @), -, in(Z”); fu(@”), -+, fmi(@Y),
nach space¥; (j = 1,---,n) in which the norm is repre- (i=1--,n.
sented by - || [7]. (5)

Now, let us introduce a series of assumptions:
(Proof is in Appendix A.)

Assumption 1 Let the operator f : X — f;(x®) c v,
be completely continuous in the sense that when a weaklyHere, the correspondence from the starting pzffit=
convergent nex'} (v € J: a directive set) weakly con- x e X to the limit pointsz e X is multivalued, in
verges tox;, then the sequendd;j(x')} has a subsequence general, and hence, by this correspondence we can define
which strongly converges tg; @) in Y;. a set-valued operatdt; : X — {z}in X;; i.e, z € Hi(x).

0 If this set-valued operatdt; has a fixed poink': i.e, X' €
Assumption 2 Let the set-valued operator;G X x Hi(x), then it satisfies the system of equations:
[15Y; x [1"Y; — F(X) (a family of all non-empty closed
compact subset of; Xsatisfies the following Lipschitz con- X' e Gi(O)(Xi*; fin(X), -+ fin(6); F1i (), -+ Fai(X5)),

dition with respect to the Hausd@distance ¢: that is, (i=1---,n)
there are three kinds of constaris< & < 1 and by > O, (6)
cji > Osuchthat forany ®, X% e X;, forany ¥,y € ¥i, by Eq. (5). Thereforex is the solution of the system of
and for any {P, ¥ € v}, G's satisfy inequalities: set-valued operator equations (2).
Now, let us refer to the well-known fixed point theorem
dn(Gi (Xi(l); ii)’ . yl(r}) 1?), e ,yﬁlli)), for set-valued operator:
GI(X|(2)1 '2)5""y'(2); ?)3"'3 2)))
1 o & @) (3) Lemma2 (Ky Fan[8]) Let % be a locally convex topo-

D @ b e D
. ?;nx' C 'Xlil ”1)+_Zy%z:ﬁ|b” (i”)ij 1 y” n) logica linear space, and ;X be a non-empty convex com-
=t e o pact subset of X Let H(X?) be the family of all non-
Here, the Hausddirdistancedy between two setS; and  empty closed convex subset ¢f’X Then, for any upper
S, is defined by semicontinuous set-valued operator KX© — H (X,
. there exists a fixed poinf x X such that x € Hi(x).
dn(S1, Sz) = maxsupd(xi, Sp)x1 € S,
sudd(xz, S1)lx2 € Sal}, In order to apply this lemma to our problem, we must
.. . . verify that the above-defined set-valued operéddg;) is
whered(x, S) = inf{l[x-yll | y € S} is the distance between pper semicontinuous, and its range is closed and convex.
apointxand a ses. In the first place, the closedness of the rangddi)
is easily verified from the assumption 2. (Proof is in Ap-
pendix B.)
A s )y - ' - ) y 2 e PR .
vi = fix), GV Vi ¥in o Vit Ya) = For the verification of the convexity, it is ficient to add
Gi(X; Yit, 5 Yin, Y1, > Yni) N Xi(o) # ¢. Moreover, there the following assumption:

Assumption 3 For any x € X and y; = fij(x),
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Assumption 4 (Rockafellar [9]) For any ¥, x?,e X, in the distancely. Thus, from this deduction, substituting
and for any constant(® < r < 1), uniformly W|th respect F,F'™andF; by
to every y; € Yjand y; €Y, G satisfies the relation:
Gi(z; fin(x), - fin(}); fu (X)), -+, fai(X0))s
r-Gi(xY; yia,- "Yin; Yiis s Yni) Gi(z; fil(™. - fin(x™); fui (), -+, fai™)
+(L= 1) Gi(X?; Vit . Yins Vi Yai)
cGir- XY+ @-1)-x?; yir, - Yin; yli,~~-,ym)(-7) and
Gi(z; fia(4), -, fin(x); fui(xa), -+, Fui(Xa)),
In fact, under the assumption 4, we have
" @ 2. _ respectively, we can apply the Lemma 3, and hence, we
r-Z+@-1-22er -G iz .Y Ya.- . ¥n)  find that the sequence of fixed points
+L=1)GiZ?; Vir. 2 Yins Vi Yai)
cGi(r-ZV+@-1-Z?; yi. . Yin; yli,--~,ym),( | @M ZMeGIE@™ fiu(X™), -, fin(X™;
8

f ™), -, fai(M),

for any 27 € Hi(x) (v = 1,2) : i.e, for any 2” o
Gi(;(v); fi1(%), -+, fin(%); Fri(x)s -, fi(%)) (v = 1,2).  1€s ALINS Hi(>.g.vm), str.ongly, and therefore, weakly con-
This relation means the convexity Bif(x;). verges to the fixed point

Lastly, in order to verify the upper semicontinuity, we _ _ ~ _ _ _ _
should yprove that if an fr?llrbitrar)t)F\)/veakly converge>r/1t net 44 €Gi(@: fie0a) - fin(X); Tui0xa). -+ fni(*n)),
{X'1(veJ)in Xi(o) weakly converges tg and if the weakly
convergent netz’} (v € J) in X made fromz’ € Hi(x)
weakly converges ta, we havez € Hi(x). For this pur-
pose, we can use the following lemma:

ie., Z € Hi(X).
As a result, we have a theorem:

Theorem 1 Let X be a reflexive, or uniformly convex, real

Lemma 3 (Nadler [10]) Let X be complete metric space, Banach space, and; @ be a non- empty bounded closed
and let P’ (v € J) andF; : X — Fo(X) (the family of all ~ Convex subset of; X By the dual space Xlet us intro-
non-empty closed compact subsets i set-valued op- duce a weak topology(X;, X;) into X. Let fjand G be
erators contracting with respect to the Hausgfatistance det_ermmlstlc a_nd set-valued Qperators, respectively, which
du: e.g., there exists a constant @ < a < 1) such that satisfy the series of assumptions 1 to 4. Then, we have a

for any 49,22 € X;, F” satisfies the inequality Cauchy sequenci!) c x© (k =0,1,2,--), introduced
by the succesive procedure in Lemma 1. This sequence has
du(F7 (@), Fr (@) < a - 12V - 22 . (9) asetof limit pointgz}, and we can define a set-valued op-

_ erator H by the correspondence from the arbitrary start-
Now, let{F}'} be uniformly convergent t6; in the distance ing point éo) =¥ € xi(o) to the set of limit pointgz} in
dy. Let 2 be afixed point of F. Then, we can find that the X(O)
sequencez’} (v € J) has a convergent subsequer{q@‘}
and its limit pomt; is a fixed point of; : ; eF (zl)

.z € Hi(x). This set-valued operator;Hhas a fixed

point x in X, which is, in turn, the solution of the system
of set- valued operator equations (2).

From the assumption 1, we remember that when any
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Appendix
and let it strongly converge to a limit poiat
A. The Cauchy Sequencéz} and Its Limit Point Then, we have
For any integer& > 0 andj > 0 (k+ j > 1), we have dZ,GO@; (27, -, fin(@?); @), -, fi(@ZM)))
- i A ©)5- £ (0 ).
1241 24y S mf{nﬁi—zu |2 < GY(@ fa @D, fin(Z;
= d@Z", GOF; 11(Z?), - -, fn(ZO); fu (@), f(Z))
fjglc»), . ii(z@)f) g < du(GO(F: fa(27), - fin(E);
< di (GO 11 Z9), -+, Fn(ZO); fiZ%), -, T (@), G;(O)(Zi; fit @), fin(Z);
fu (20, -, Fui(Z), fu(Z%), o fri(ZY)))
GG @), (@), <&l
Lt (A0 (O
Fu (3(1]0_)1’ " ’+fj"'(z'(“0 ) Now, letZ be a projection point, iX®, of Z upon the set
< -2 GO 1@, i@ @), -, (@), Then,
<ad 47— 2. e find N o 0
Therefore, for ank > 0 andm > 0, we find d(Z: |(|3_|( )(Zj;”fil(zi( Do £in@); @), £ Z)
) ) <z -4
e A N i <1z - 201+ 12 - 2]
< Iz’ -2l S o <11z ~ 2+ d@ GO f@”). . fin(4);
< 137 -7 Zoa (@), fai(2")
= a-@-a)yt- 12 -2. <1z -7l +a - Iz -l

. =(l+a) IZ-zll-0.
Hence, ||z — ™| — 0, ask — +co, i.e, the sequence

{Z) is a Cauchy sequence. Sinkgis complete ank® is ~ ask — 0. Hence,

closed,{j(} has at least one limit poirztEX.(o). = ~O 5. £ (5O .. £ O\ £ OV £ OV —
Now, let us consider a projection poinlto”f Z+1 upon dz,GO@; 1@, @) @), -, @) =0,

GO%; @), -, @) @), -, fi(@Y). Then, and so,

we rlaveO B X . . . 7 € Gi(Z, f (2(0)) e f (z‘O))' f (ilo)) co, £i(Z9)
d@.G(@; @), fin(@”); @), - (@) A B B il T Tl
<llz -zl which is equivalent t@, € Hi(x) .

<01z = 2 + 112 = 2431 + 124" - 2 -
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