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Abstract—In this paper, we propose the delay feed-
back control method which is applicable to chaotic neu-
ral network model. In computer experiments, the method
is applied to controlling dynamical associative memory in
chaotic neural network model. From the results, our pro-
posed method succeeds in stabilizing the orbits which be-
come unstable under bifurcation processes. For instance,
injecting control signal to chaotic wandering state, the net-
work gives a certain memory pattern only.

1. Introduction

Chaotic phenomena have been observed in neuron, neu-
ral network and so on [1]-[4]. It suggests that chaos could
play important roles in realizing flexible information pro-
cessing and controlling actions through the processing of
biological system. Related with them, in actual, several
pioneer workers have investigated potentialities of chaotic
dynamics in neural network model [5]-[10].

In recalling process and learning process, Skarda and
Freemann presented the attractive idea based on their bi-
ological and computer experiments on the olfactory bulb
[3, 4]. We focus on two results of theirs: (i) During the
waiting state for input signals, the dynamical response of
the olfactory system falls into a highly developed chaotic
attractor. (ii) The response to a certain memorized input
gives a weak chaotic attractor or a limit cycle. Thus, in
recalling process, chaos could ensure rapid and unbiased
access to previously trained patterns. In other words, chaos
could play important roles in realizing memory search of
recalling process. From the theoretical viewpoints, Nara
and Davis presented interesting results in complex memory
search of neural network model with multi-cyclic memory
patterns [5, 6]. And also, Kuroiwa, Nara et al. gave in-
teresting results of functional potentialities of chaotic dy-
namics in rapid access to the target attractor of a memory
fragment [10].

At least, in realizing recalling process based on chaotic
dynamics, it is important to control chaotic wandering state
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gradually depending on the attribute of the target input or
on the input itself. One of most famous studies in con-
trolling chaos was done by Ott, Grebogi and Yorke (OGY)
[11]. Inspired by the pioneer work of OGY, various investi-
gations in controlling chaos have been done. For instances,
occasional proportional feedback control (OPF) [12], delay
feedback control (DFC) [13], pinning control [14], and so
on. These controlling methods have ever been applied to
systems with small degree of freedoms.

In this paper, we employed the methods into the sys-
tem with large degree of freedoms. Especially, we focus
on neural network model as example of systems with large
degree of freedoms. In a few papers, the chaos control in
chaotic neural neural network model was investigated by
employing different methods [15, 16, 17]. One of them has
been done by us, where we proposed a type of delay feed-
back control of chaotic neural network model [15]. Un-
fortunately, in the paper, we could not stabilize the orbits
which become unstable under bifurcation processes. Stabi-
lization of the unstable orbits is one of important problems
in delay feedback control methods of chaotic neural net-
work model.

Therefore, the purposes of the present paper are (i) to
propose a novel delay feedback control method in chaotic
neural network model, which could stabilize the orbits
which become unstable under bifurcation processes, and
(i) to investigate the robustness of the chaos control with
the change of the control parameters.

2. Chaotic Neural Network Model

Let us present the chaotic neural network model pro-
posed by Adachi and Aihara [9]. The ith neuron of the
network model at time ¢ is given as follows:
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where t represents a discrete time (r = 0,1, 2, - - -), the x;(?)
is the output of the ith neuron at time ¢, the internal state
variable of 7;(¢) is a feedback input from the other neurons
in the network which represents the effect of the associative
memory, the internal state variable of {;(¢) is the refractori-
ness effect of the neuron at time ¢, g; is a constant bias input
of the ith neuron, and N is the number of neuron in the net-
work. The parameter « is the refractory scaling of neuron.
The parameters k¢ and k, are the decay parameters for the
feedback inputs and the refractoriness, respectively.

As the output function f(x), we employ sigmoid function
with the steepness parameter € as follows:
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The parameters w;; are synaptic weights to the ith neuron
from the jth neuron as given,
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where f}" is the binary patterns stored as basal memory pat-
terns in the network and the ith component of the pth binary
pattern takes O or 1. The parameter P is the total number of
stored memory patterns.

3. Delay Feedback Control Method in Chaotic Neural
Network

In the chaotic neural network model, the existence of the
refractory scaling « and the steepness of the sigmoid func-
tion € leads to chaotic dynamics. In usual, the steepness
of the sigmoid function € is fixed. In the present study,
we control chaotic dynamics of the chaotic neural network
model by adjusting the effect of the refractory scaling
through the delay feedback control. Therefore, the novel
delay feedback control method is described as follows:

x(t+1) = fit+ D+ G+ D+ F(t+ 1)  (6)

)

where F;(¢) is a control signal, 3 is the strength of the con-
trol signal, T represents the delay time, and the parameter
k4 is the decay parameters for the control signal. The vari-
ables of 7;(r + 1) and ;(¢ + 1) are the same ones as Eq.(2)
and (3), respectively.

In the previous work, unfortunately, we could not stabi-
lize the unstable orbits. The reason would be inappropriate
choice of the delay feedback signal, in R.H.S of Eq.(7), not
x;(t — 7) but x;(f) — x;(t — 7). In the case of the delay feed-
back signal, x;(t)—x;(z—7), if the output of x;(¢) is correlated
with the delayed output of x;( — 7), the effect of the delay
feedback signal vanishes, and then the system could not be
controlled by the method. In the case of the delay feedback

Fi(t+1)=ksF;(®) +,8x,<(t -7)
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signal, x;(t — 7), on the other hands, if the output of x;(¢)
is correlated with x;(t — 7), the effect of the delay feedback
signal could negate the refractory effect of Eq.(3) which is
important in giving chaotic dynamics in the system. Thus,
the system could be controlled as you like.

In our method, the parameters are 3, T and k4. Especially,
the parameter dependence on 8 and k, is important. If we
can identify the system a priori, it is easy to determine the
value of the parameters. In general, however, we could not
know them a priori. In the latter computer experiments,
therefore, we investigate the parameter dependence of the
controlled system dynamics on 3 and k.

4. Computer Experiments

4.1. Stored Memory Patterns and Experiments Condi-
tions

In the present paper, as shown in Fig.1, four patterns are
stored in the network [9]. Each pattern is composed of
10 x 10 binary pixels, corresponding to the network output
with 100 neurons. The pth stored pattern of the ith neuron,
xi?, takes O or 1. In the Fig.1, the “excited” neuron which
takes 1 is represented by a block “I”, and the “restraining”
neuron which takes 0 is denoted by a block “I 1™,

The parameters are employed as k, = 0.8, ky = 0.2, g;
2 and € = 0.1. In all the following numerical simulations,
the same values of parameters are employed without losing
generality of our results.

4.2. Chaotic Dynamics in Noncontrolled System

The parameter dependence of the chaotic dynamics of
the network model is visualized by observing the following
one-dimensional quantity during long time steps with the
change of the refractory scaling parameter a.

1 N
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The variable m(z) is calculated by the inner product be-
tween the reference pattern §ip and the output of the ith
neuron of the network at time ¢. While the network out-
put corresponds to the reference pattern, the value of m(r)
takes 1. On the other hand, it become m(z) = —1 for the
reversal pattern. In these cases, by plotting the value of
m(t) on the a-m(t) plane during long time steps, only one

Figure 1: Four patterns stored in the model
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Figure 2: Long time observation of the overlap between the
reference pattern and the network output. (a) The change
of @ from 0 to 10.0. (b) Enlarged view of (a) from 4.286 to
4.296.

point is plotted. For several regions of a, a lot of points
are plotted, indicating that chaotic dynamics occurs. Thus,
with the change of a, by plotting the value of m(¢) during
long time steps, we can obtain “bifurcation diagram” with
respect to m(z).

The result is given in Fig.2. We evaluate m(r) during the
time duration from ¢ = 11002 to r = 13002 with the change
of @ from 0 to 10.0 with 0.01 steps. From the result, we
can observe that for small value of @, the system is non-
chaotic, fixed point or the periodic orbit. As increasing the
value of a, through the period doubling bifurcation process,
the system becomes chaotic. Around @ = 8.2, a large num-
ber of points are plotted. Thus, the system is in a highly
developed chaotic state. In actual, the Lyapunov exponent
takes positive value for @« = 8.2. Therefore, in the latter
computer experiments of the chaos control, the refractory
scaling parameter is set to be @ = 8.2.

4.3. Controlled Dynamics

Let us investigate whether the proposed delay feedback
control can stabilize the unstable orbits or not, by evaluat-
ing the overlap m(z#) with the change of the control signal
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Figure 3: Controlled dynamics. (a) The change of 8 from
0to 8.2. (b) Enlarged view of (a) from 3904 to 3914,

strength of 3. For the simplicity of the problem, the de-
cay parameter of the control signal is k; = 0.8 (= k,). In
computer experiments, until 7 = 11001 steps, the system is
updated without any control signals in order to avoid tran-
sient dynamics. At¢ = 11002 steps, we start to inject the
control signal. We depict the bifurcation diagram of m(¢)
from ¢ = 21002 to 7 = 23002.

Result is given in Fig.3. We can observe the mirrored-
image relationship between Fig.2 and Fig.3. In actual, for
the case of m(f) = 1, the system converges to the refer-
ence pattern. In addition, from Fig.3(b), the control method
can stabilize periodic orbits. Therefore, the control method
succeeds to stabilize the orbits which become unstable un-
der bifurcation processes. It should be noted that by inject-
ing the control signal at different time steps, the system can
converge different stored pattern from the reference pattern.

4.4. Robustness of the Control

In previous subsection, we investigate controlled dynam-
ics with the change of the control signal strength for the
same value of the decay parameter k; as the decay param-
eter of the refractoriness k.. In general, however, we could
not know system features completely a priori. Thus, in the
chaos control, the parameter robustness is necessary.
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Figure 4: Parameter dependence of the controlled dynam-
ics for 8 and k.

In the Fig.4, the parameter dependence of the controlled
dynamics for 8 and k; is drawn. In the case of the decay
parameter of the refractoriness k, = 0.8, the system can
converge to the reference pattern by means of the control
method for the region over 0.58 < k;. The result suggests
that the parameter dependence of the controlled dynamics
is not so sensitive to 8 and k. Thus, the control method has
the parameter robustness.

5. Conclusions

In the present paper, we investigate the delay feedback
control of associative memory dynamics in chaotic neural
network model. Results are as follows:

e The proposed control method can stabilize the or-
bits which become unstable under the bifurcation pro-
cesses.

e The method has the parameter robustness for the
strength of the control signal 3 and the decay parame-
ter of the control signal k4. Thus, the method is appli-
cable to various chaotic neural network models even
if we could not know system features completely a
priori.
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