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Abstract—The synchronization method derived from
cellular slime mold (CSM) is known as the robust method
for synchronization between limit cycle oscillators. In this
paper a system of synchronization via an extended CSM
method is presented and investigated for cyclically coupled
four chaotic circuits. Electronic circuit realization of this
system is also presented by using a state-controlled cellu-
lar neural network.

1. Introduction

Rhythm synchronization plays important roles in artifi-
cial systems and biological systems. Recently a powerful
method for synchronization of limit cycles learned by cel-
lular slime mold (CSM) was presented [1] and its engineer-
ing applications have been searched. We call this synchro-
nization method the CSM method. The CSM method can
synchronize large number of limit cycles with broad dif-
ferent natural frequencies and mechanically quite different
types of oscillators [1]. Existence of limit cycles is a nec-
essary condition for synchronization of oscillators by the
CSM method. We have a question: Can we synchronize
chaotic attractors by extending the CSM method?

In this paper, using numerical experiments, we investi-
gate synchronization in coupled chaotic systems by an ex-
tended CSM method. As an example, we present a system
of synchronization of cyclically coupled 4 chaotic oscil-
lators using an extended CSM method with allowing non-
uniform coupling coefficients and both signs among the co-
efficients. Some interesting patterns of synchronization of
this coupled oscillator are observed by changing couplings.
We propose also an electronic circuit realizing this system
using a state-controlled neural network (SC-CNN)[2] con-
figuration.

2. The CSM Method and its Extension

In the CSM method, one variable to describe a limit cy-
cle oscillator is replaced with a linear coupling of the same
type of variables of individual oscillators [1] . For example,

let us consider limit cycle oscillators described by

dx j

dt
= Xj(x j, y j) ,

dy j

dt
= Yj(x j, y j) (1)

j = 1, ...,N
The system of synchronizing the limit cycles by the CSM

is given by

dx j

dt
= Xj(x j, y j) ,

dy j

dt
= Yj(x j + γ j

∑

l

xl, y j) (2)

whereγ j is an arbitrary positive number that is chosen to
correspond to the sensitivity of a biological receptor. Note
that a state variablex j (not self state variable) was chosen to
replace it with linear combination in the differential equa-
tion dy j

dt .

The CSM method is powerful for synchronizing
coupled- limit cycle oscillators but can not synchronize for
coupled- chaotic oscillators as it is. So we extend the CSM
method a bit as in the following

dx j

dt
= Xj(x j, y j) ,

dy j

dt
= Yj(x j +

∑

l

γl j xl, y j) (3)

whereγl j is not necessarily uniform as in (2) and allowed
to take both signs. There are conventional methods for
synchronization of coupled chaotic systems [5]. However,
the extended CSM method is not identical to conventional
ones.

3. Synchronization of limit cycle oscillators by the ex-
tended CSM method

In the beginning we consider synchronization of limit
cycles generated by simple cellular neural networks (CNN)
[3] by using the extended CSM method.

The CNN limit cycle oscillator is described by

ẋ1 = −x1 + 1.7y1 − y2 − 0.2 (4)

ẋ2 = −x2 + y1 + 1.7y2 + 0.2 (5)
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whereyi is an output ofi − th cell and given by a unit gain
nonlinear function with saturation:

yi =
1
2

(|xi + 1| − |xi − 1|) . (6)

The system for synchronization between two CNN oscilla-
tors by the extended CSM method is described by

ẋ1 = −x1 + 1.7y1 − y′2 − 0.2

ẋ2 = −x2 + y1 + 1.7y2 + 0.2 (7)

ẋ3 = −x3 + 1.7y3 − y′4 − 0.2

ẋ4 = −x4 + y3 + 1.7y4 + 0.2

where

yi =
1
2

(|xi + 1| − |xi − 1|)

y′2 =
1
2

(|x2 + γ1x2 + γ2x4 + 1| − |x2 + γ1x2 + γ2x4 − 1|)

y′4 =
1
2

(|x4 + γ1x4 + γ2x2 + 1| − |x4 + γ1x4 + γ2x2 − 1|)
γ1 is a coupling coefficient from the self cell output and
γ2 is one from the other cell output in a CNN oscilla-
tor. Taking proper values and sign as the coupling coef-
ficients, we can determine the pattern of synchronization
whether they oscillate in the same phase or constant de-
layed phase. Whenγ = γ1 = −γ2 in the system (7), the
relationship between the state of synchronization and the
coupling coefficientγ is shown in Table 1. For the param-
etersγ1 = 0.4 , γ2 = −0.4, the two oscillators evolve with
a phase differenceπ as shown in Figure 1. On the other
hand, for parametersγ1 = γ2, we can see the two oscilla-
tors evolve in phase.

Table 1: Relationship between the value of the coupling
coefficient and synchronization

0 < γ < 0.1 0.1 ≤ γ ≤ 1.2 1.2 < γ
long transient synchronized broken waves

Next we demonstrate synchronization between mechani-
cally different two limit-cycle oscillators (the CNN oscilla-
tor and the van der POL’s oscillator) by using the extended
CSM method. The system for synchronization between the
CNN oscillator and the van der Pol’s oscillator is given by

ẋ1 = −x1 + 1.7y1 − y′2 − 0.2

ẋ2 = −x2 + y1 + 1.7y2 + 0.2 (8)

ẋ3 = x4 + γ1x4 + γ2x2

ẋ4 = −ω2x3 + (1− x2
3)x4

where

yi =
1
2

(|xi + 1| − |xi − 1|)

y′2 =
1
2

(|x2 + γ1x2 + γ2x4 + 1| − |x2 + γ1x2 + γ2x4 − 1|)

Whenγ = γ1 = −γ2 in the system (8), the relationship
between the state of synchronization andγ is shown in Ta-
ble 2.

Table 2: Relationship between the value of the coupling
coefficient and synchronization

0 < γ < 0.3 0.3 ≤ γ ≤ 1.0 1.0 < γ
not synchronized synchronized broken waves

The synchronized waves in the same phase (for param-
etersγ1 = 0.4 , γ2 = −0.4) are shown in Figure 2. For
parametersγ1 = γ2, we can see the two oscillators evolve
with a phase differenceπ.
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Figure 1: Wave forms of the CNN limit cycle oscillators in
synchronized state with the phase 180 deg behind
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Figure 2: Wave forms of the CNN oscillator and van
der Pol’s oscillator in synchronized states by the extended
CSM method
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4. Synchronization of Coupled Chaotic Systems by the
Extended CSM Method

In this section we investigate synchronization of cycli-
cally connected 4 chaotic systems as shown in Figure 3 by
using the extended CSM method.

Figure 3: Cyclically connected 4 chaotic systems

In the figure each cell consists of the Chua’s oscillator
[4] [2] which has the double scroll attractor.

The whole system for synchronization of the chaotic sys-
tems using the extended CSM method is described by

ẋ1 = α(x2 − f (x1))

ẋ2 = −x2 + x3 + x1 + (γ2x1 + γ1x10 + γ3x4)

ẋ3 = −βx2

ẋ4 = α(x5 − f (x4))

ẋ5 = −x5 + x6 + x4 + (γ2x4 + γ1x1 + γ3x7)

ẋ6 = −βx5 (9)

ẋ7 = α(x8 − f (x7))

ẋ8 = −x8 + x9 + x7 + (γ2x7 + γ1x4 + γ3x10)

ẋ9 = −βx8

ẋ10 = α(x11 − f (x10))

ẋ11 = −x11 + x12 + x10 + (γ2x10 + γ1x7 + γ3x1)

ẋ12 = −βx11

where

f (xi) =
2
7

xi +
1
2

(−1
7
− 2

7
)(|xi + 1| − |xi − 1|) . (10)

The wave forms of the state variablesx1, x4, x7, andx10

are shown in Figure 4 for the parametersα = 12 , β =
9 , γ2 = −0.5 , γ1 = γ3 =

0.5
2 . Observing the Lissajou’s

figure in Figure 5 we find that complete synchronization
has been attained among the state variablesx1, x4, x7, and
x10.
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Figure 4: Complete synchronization of the coupled chaotic
systems in Figure 3 by the extended CSM method
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Figure 5: Lissajou’s figure :x4, x7, x10 vs. x1

Note that the extended CSM method with appropriate
coupling coefficients allows the coupled chaotic systems to
synchronize as well as the coupled limit cycle systems.

5. Electronic Circuit for Synchronization of Coupled
Chaotic Systmes with the Extended CSM Method

In this section we present a state-controlled cellular neu-
ral network (SC-CNN[2]) realization of the synchroniza-
tion system (9) for the coupled chaotic systems. Figure 6
shows one of 4 coupled chaotic systems and the way of
couplings by the extended CSM method, which are shown
in the broken line boxes. In this op-amp-based circuit the
op-amp LF356’s are employed. Figure 7 shows a SPICE
simulation for the synchronization circuit with coupling co-
efficientsγ1 = −0.5, γ2 = γ3 = − 0.5

2 . These wave forms
of voltages correspond to state variablesx1, x4, x7, x10 in
Equations (9). Obseving the Lissajou’s figure in Figure 8
we find that adjacent chaotic circuits and chaotic circuits
on the diagonal in Figure 3 are synchronized in the same
phase and in the opposite phase respectively. Also we note
that very precise synchronization has been attained since
the trajectories are just on the lines.
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Figure 6: Part of SC-CNN realization for the system (9)
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Figure 7: Wave forms of the coupled chaotic circuits
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Figure 8: Lissajou’s figure for node voltages in the coupled
chaotic circuits:x4, x7, x10 vs. x1

Table 3 shows relationship among the coupling template,
the type of synchronization pattern, and its pattern, which
are confirmed in numerical experiments. In the table a cou-
pling templateAr denotes a vector ofAr = [γ2 γ1 γ3] in
a chaotic cell. The pattern represents configuration of syn-
chronization in chaotic circuits, where I denotes a chaotic
oscillation with synchronization in the same phase and -I
denotes one in the opposite phase. II and -II denote the
other chaotic oscillation synchronizing each other with the
opposite phase.

Table 3: Patterns of synchronization in the coupled chaotic
systems (9)

coupling template pattern type pattern

Ar= [ 0.5
2 − 0.5 0.5

2 ] I

Ar= [− 0.5
2 − 0.5 − 0.5

2 ] I , -I

Ar= [− 0.36
2 − 0.6 0.36

2 ] I , -I , II , -II

Ar1 = [− 0.5
2 − 0.5 − 0.5

2 ]
Ar2 = [ 0.5

2 − 0.5 − 0.5
2 ]

Ar3 = [ 0.5
2 − 0.5 0.5

2 ]
Ar4 = [− 0.5

2 − 0.5 0.5
2 ]

I , -I

Ar1 = [− 0.5
2 − 0.5 0.5

2 ]
Ar2 = [ 0.5

2 − 0.5 − 0.5
2 ]

Ar3 = [− 0.5
2 − 0.5 0.5

2 ]
Ar4 = [ 0.5

2 − 0.5 − 0.5
2 ]

I , -I

6. Conclusions

In this paper, via numerical experiments, we have
shown that the extended CSM method can synchronize
the coupled chaotic oscillations as well as the limit cy-
cles. We have demonstrated them for the cyclically coupled
4 chaotic systems, where we found there are several pat-
terns of synchronization depending on coupling templates.
We have also presented a SC(State Controlled)-CNN real-
ization for this system and confirmed its performance by
SPICE simulations. Theoretical proof for synchronization
by the extend CSM method remains to be done.
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