
An Efficient Method for Searching Optimal Kernel Parameter of
Support Vector Machines

Keisuke Arima† and Norikazu Takahashi†

†Department of Computer Science and Communication Engineering, Kyushu University
6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 Japan

Email: arima@kairo.csce.kyushu-u.ac.jp, norikazu@csce.kyushu-u.ac.jp

Abstract—Generalization capability of support vector
machines depends heavily on the kernel function and its
parameters. In this paper, we focus our attention on the
Gaussian kernel and propose an efficient method for find-
ing the kernel parameter which minimizes the number of
support vectors. Since the generalization error estimated
by the leave-one-out procedure is upper-bounded by the
ratio of the number of support vectors to the number of
training samples, the proposed method will be useful for
finding support vector machines with higher generalization
capability.

1. Introduction

Support vector machines (SVMs) [1,2] have recently at-
tracted great attention in the fields of pattern recognition,
machine learning, neural networks, signal processing, and
so on. An SVM maps input patterns into the feature space
with a kernel function and then classifies them into two
classes by a hyperplane in the feature space. Since gen-
eralization capability of an SVM depends heavily on the
kernel function, it is important to find the optimal kernel
function efficiently. So far, various techniques for finding
the kernel parameter for which smaller generalization error
is achieved have been proposed [3]. Many of them is based
on leave-one-out (LOO) estimate of the generalization er-
ror because LOO error has good properties. However, LOO
estimate is time-consuming.

In this paper, we focus our attention on the Gaussian ker-
nel, the most widely used kernel for SVMs, and consider
the problem of finding the kernel parameter which mini-
mizes the number of support vectors (SVs). Since LOO
estimate of the generalization error is upper-bounded by
the ratio of the number of SVs to the number of training
samples [3], this problem is important for increasing the
generalization capability of SVMs. In fact, as shown in
Fig. 1, the kernel parameter minimizing the number of SVs
is very close to that minimizing the generalization error. In
addition, since the number of SVs represents the simplic-
ity of the decision function of SVMs, this problem is also
important for speeding up the classification time for test
patterns.

 50

 100

 150

 200

 250

 300

 350

 400

0 2 4 6 8 10 12
0

 10

 20

 30

 40

 50
No. of Support Vectors

Test error

N
o.

 o
f S

up
po

rt
V

ec
to

rs

Test error (%
)

Figure 1: Dependence of the generalization error and the
number of SVs on the kernel parameter.

2. Problem Formulation

Suppose that we are given a set of l training samples
{(xi, di)}l

i=1 where xi ∈ R
n is the i-th input pattern and

di ∈ {1,−1} represents the class to which xi belongs. The
learning of an SVM with the kernel function K(·, ·) leads
to the following quadratic programming (QP) problem [1].

Problem 1 Find α = [α1, α2, . . . , αl]T which minimizes
the objective function

W (α) =
1
2

l∑
i=1

l∑
j=1

qijαiαj −
l∑

i=1

αi

under the constraints

l∑
i=1

diαi = 0 (1)

0 ≤ αi ≤ C, i = 1, 2, . . . , l (2)

where qij = didjK(xi, xj) and C is a user-specified pos-
itive constant.

If the kernel function K(·, ·) satisfies the Mercer’s condi-
tion, the matrix Q = [qij] becomes positive semi-definite
and therefore Problem 1 has no local minimum [1]. Let

2005 International Symposium on Nonlinear
Theory and its Applications (NOLTA2005)

Bruges, Belgium, October 18-21, 2005

238

α∗ = [α∗
1, α

∗
2, . . . , α

∗
l]

T be an optimal solution of Prob-
lem 1 and i0 be any i such that 0 < α∗

i < C. Then the
decision function of the SVM can be expressed as

f(x) = sgn

(l∑
i=1

α∗
i diK(xi, x) + b

)
(3)

where b is given by

b = di0 −
l∑

i=1

α∗
i diK(xi, xi0) . (4)

Since only a small number of α∗
i ’s take nonzero values in

general, the decision function (3) is composed of a small
number of terms. The input pattern xi corresponding to a
nonzero α∗

i is called a support vector.
In this paper, we restrict ourselves to the Gaussian kernel

defined by

K(x, x′) = KG
σ (x, x′) = exp

(
−||x − x′||2

2σ2

)

where σ is a positive number determined by users. Also, we
assume hereafter that all xi’s are distinct. Then Q = [qij]
becomes positive definite for any σ > 0 [2] which implies
that Problem 1 has a unique optimal solution.

The problem considered in this paper is as follows:

Problem 2 Find σ which minimizes the objective function

V (σ) = |{i |α∗
i > 0}|

where α∗ = [α∗
1, α

∗
2, . . . , α

∗
l]

T is the optimal solution of
Problem 1 with K(·, ·) = KG

σ (·, ·).
Problem 2 is known as a bilevel optimization problem

such that the first level problem is to minimize V (σ) and
the second level is Problem 1. It is known that bilevel op-
timization problems are difficult to solve even if both the
first and second level problems are linear. In our case, the
first level problem is a discrete optimization and the second
level is a QP problem. Therefore, Problem 2 is thought to
be extremely hard to solve.

In the following, in order to make clear the dependence
of the matrix Q and the optimal solution α∗ of Problem 1
on the parameter σ, we will use the notations Q(σ) =
[qij(σ)] and α∗(σ) = [α∗

1(σ), α∗
2(σ), . . . , α∗

l (σ)]T .

3. Preliminaries

In this section, we will present some basic results which
will be useful for the proposed method.

3.1. Optimality Condition

Since Q is positive definite, an α ∈ S, where S denotes
the feasible region of Problem 1, is the optimal solution if
and only if the Karush-Kuhn-Tucker (KKT) conditions are

satisfied. Moreover, the KKT conditions can be rewritten
in a compact form as follows [4]:

min
i∈Iup(α)

Fi(α) ≥ max
i∈Ilow(α)

Fi(α) (5)

where

Fi(α) = di

(l∑
j=1

qij(σ)αj − 1
)

,

Iup(α) = {i | 0 < αi < C} ∪ {i |αi = 0, di = 1}
∪ {i |αi = C, di = −1},

Ilow(α) = {i | 0 < αi < C} ∪ {i |αi = 0, di = −1}
∪ {i |αi = C, di = 1}.

In a practical situation, the optimality condition (5) is often
relaxed as

min
i∈Iup(α)

Fi(α) ≥ max
i∈Ilow(α)

Fi(α) − τ (6)

where τ is a positive constant [4,5]. A pair of indices (i, j)
such that

i ∈ Iup(α), j ∈ Ilow(α), Fi(α) ≤ Fj(α) − τ

is called a τ -violating pair at α. It is obvious from these
definitions that α ∈ S satisfies the optimality condition (6)
if and only if there is no τ -violating pair at α.

3.2. Continuity of the Optimal Solution

Since the second level problem of Problem 2 is parame-
terized with σ, it is important to check whether the solution
α∗(σ) is continuous with respect to σ or not. This question
is positively solved by the following theorem.

Theorem 1 The optimal solution α∗(σ) of Problem 1 is
continuous with respect to σ.

Proof: Let σ0 be any positive number. Let ε = ||Q(σ) −
Q(σ0)||. Then it follows from Theorem 2.1 of [6] that

||α∗(σ) − α∗(σ0)|| ≤ ε

λ − ε
||α∗(σ0)|| (7)

holds if ε < λ where λ is the smallest eigenvalue of Q(σ0).
Since the matrix Q(σ) is apparently continuous at σ = σ0,
ε goes to zero as σ approaches σ0. Hence the right-hand
side of (7) converges to 0 as σ approaches σ0. This implies
that α∗(σ) is continuous at σ0. �

Theorem 1 says that if σ is sufficiently close to σ0 then
α∗(σ) exists in the neighborhood of α∗(σ0). This property
plays an important role in the proposed method.

4. Proposed Method

4.1. How to Update σ

The curve of V (σ) often has one deep valley as shown
in Fig.1. However, since V (σ) takes discrete values, it is

239

Figure 2: How to update the interval.

impossible to define the derivative of V (σ) with respect to
σ. In fact, there are a number of local peaks and valleys
as one can see in Fig.1. Therefore traditional line search
algorithms are not applicable to this problem. So we will
employ the following strategy: First, we set σ to a suffi-
ciently large value σ0 and then moves to the left with a
fixed step size h as σk = σ0 − kh (k = 0, 1, 2, . . .) until

V (σk) > V (σk−1) and V (σk−1) < V (σk−2)

are satisfied. It is apparent that the minimum point neces-
sarily belongs to the interval I1 = [σk, σk−2] of length 2h

if there is only one valley. Next we set σ
(1)
1 = σk, σ

(1)
2 =

(σk + σk−1)/2, σ
(1)
3 = σk−1, σ

(1)
4 = (σk−1 + σk−2)/2

and σ
(1)
5 = σk−2, and then find n ∈ {1, 2, 3} such that

V (σ(1)
n) > V (σ(1)

n+1) and V (σ(1)
n+1) < V (σ(1)

n+2)

are satisfied. Once again, the minimum point belongs to the
interval I2 = [σ(1)

n , σ
(1)
n+2] of length h if there is only one

valley (see Fig.2). By repeating this process, we can obtain
the sequence of intervals I1, I2, . . . such that the length of
Im is given by h(1/2)m−1 and the minimum point must
belong to all of them. The process is stopped when the
interval becomes sufficiently short.

This strategy is formally expressed as follows:

Algorithm 1 Given the training samples {(xi, di)}l
i=1,

the parameter C, the initial value σ0 of σ, the initial step
size h and the minimum step size hmin, find σ∗ by execut-
ing the following procedures.

1) Set k = 0, σ1 = σ0 − h and σ2 = σ0 − 2h.

2) If V (σk+2) > V (σk+1) and V (σk+1) < V (σk) hold,
then go to Step 4). Otherwise go to Step 3).

3) Add 1 to k, set σk+2 = σk − 2h, and go to Step 2).

4) Set m = 1 and

σ
(m)
1 = σk+2, σ

(m)
2 = (σk+2 + σk+1)/2,

σ
(m)
3 = σk+1, σ

(m)
4 = (σk+1 + σk)/2,

σ
(m)
5 = σk.

5) If σ
(m)
5 − σ

(m)
1 < hmin then set σ∗ = σ

(m)
3 and stop.

Otherwise go to Step 6).

6) Find n ∈ {1, 2, 3} such that V (σ(m)
n) > V (σ(m)

n+1) and

V (σ(m)
n+1) < V (σ(m)

n+2) are satisfied. Add 1 to m, set

σ
(m)
1 = σ

(m−1)
n , σ

(m)
2 = (σ(m−1)

n + σ
(m−1)
n+1)/2,

σ
(m)
3 = σ

(m−1)
n+1 , σ

(m)
4 = (σ(m−1)

n+1 + σ
(m−1)
n+2)/2,

σ
(m)
5 = σ

(m−1)
n+2 ,

and go to Step 5).

4.2. How to Find α∗(σ)

The most time-consuming task in Algorithm 1 is to find
the optimal solution α∗(σ) for various values of σ. So it is
important to reduce the computation time required for this
part. Here we will propose a method of computing α∗(σ)
with high efficiency.

The key idea is to make use of the previously ob-
tained values of α∗(σ). Let us explain this by consid-
ering α∗(σ(m)

2) in Step 6). Since σ
(m)
2 is close to σ

(m)
1

and σ
(m)
3 for large m, it is expected from Theorem 1

that α∗(σ(m)
2) exists in the neighborhood of α∗(σ(m)

1)
or α∗(σ(m)

3), where both α∗(σ(m)
1) and α∗(σ(m)

3) have
already been obtained in the process of determining n.
Therefore, when we try to find α∗(σ(m)

2) by solving Prob-
lem 1, the computation time will be reduced if we set the
initial feasible solution to (α∗(σ(m)

1) + α∗(σ(m)
3))/2 in-

stead of the zero vector1. Moreover, it is also expected
that there exist only a small number of τ -violating pairs
at the initial feasible solution (α∗(σ(m)

1) + α∗(σ(m)
3))/2.

The computation time will be further reduced by using the
decomposition method [5] which is a well-known iterative
technique to solve large QP problems.

The proposed method is formally stated as follows:

Algorithm 2 Given σ, find α∗(σ) by executing the follow-
ing procedures.

1) Set u = 0 and determine the initial feasible solution
α0. When α∗(σk) has to be found in Step 2) of Al-
gorithm 1, α0 is set to α∗(σk−1) if k �= 0 and the
zero vector if k = 0. When α∗(σ(m)

k) (k = 2 or 4)
has to be found in Step 6) of Algorithm 1, α0 is set to
(α∗(σ(m)

k−1) + α∗(σ(m)
k+1))/2.

2) If (6) is satisfied with α = αu, then set α∗(σ) = αu

and stop. Otherwise go to Step 3).

3) Find all τ -violating pairs at αu. Let B ⊆ {1, 2, . . . , l}
be the set of all i such that (i, j) or (j, i) is a τ -
violating pair at αu for some j.

4) Solve Problem 1 under the additional constraints αi =
αu,i for all i �∈ B. Set αu+1 to the optimal solution,
add 1 to k, and go to Step 2).

1In QP problem solvers such as quadprog of Matlab and quapro
of Scilab, users can optionally set the initial feasible solution.

240

We call the optimization problem in Step 4) the subprob-
lem. Note that the subproblem is a QP problem with the
variables αi, i ∈ B. If αu is close to the optimal solution,
the number of τ -violating pairs at αu is small and there-
fore the size of the subproblem is also small. Hence each
subproblem can be solved much faster than the original QP
problem having l variables. This is the main advantage of
the decomposition method.

5. Experimental Results

In order to verify the efficiency of the proposed method,
we have carried out some experiments with the benchmark
data2. In the experiments, the parameter C was set to the
values specified at the web site of the benchmark data ex-
cept for “diabetis”3. The initial value of σ was set to

σ0 = max
i,j

||xi − xj ||/
√

−2 log 0.9

so that minij |qij(σ0)| = 0.9 holds. The initial and min-
imum step sizes for σ are set to h = σ0/20 and hmin =
σ0/28, respectively.

For the purpose of comparison, we have used the follow-
ing three methods in addition to the proposed method. All
of these methods are implemented in Scilab.

1) Method 1: The parameter σ is updated with the fixed
step size hmin as σk = σ0 − khmin (k = 0, 1, 2, . . .).
For each k, α∗(σk) is found by executing quapro
once without specifying the initial feasible solution.
The value of σk which minimizes V (σk) is set to σ∗.

2) Method 2: The parameter σ is updated as in Method 1.
For each k, α∗(σk) is found by executing quapro
once with the initial feasible solution α∗(σk−1). The
value of σk which minimizes V (σk) is set to σ∗.

3) Method 3: The parameter σ is updated as in Method 1.
For each k, α∗(σk) is found by Algorithm 2. The
value of σk which minimizes V (σk) is set to σ∗.

Experimental results are shown in Tables 1 and 2. Ta-
ble 1 shows the CPU time spent by each method. By com-
paring the results of Methods 1 to 3, we see that the specifi-
cation of the initial feasible solution and the application of
the decomposition method effectively reduce the compu-
tation time. Also, by comparing the results of Method 3
and the proposed method, we can say that the strategy
for updating σ in Algorithm 1 is very effective. Table 2
shows comparison results between Method 3 and the pro-
posed method in terms of the number of SVs and test er-
ror. As shown in these results, the number of SVs and the
test error for the proposed method are at the same level as
Method 3, while the computation time is considerably re-
duced. From these observations, we can conclude that the
proposed method is very useful for finding the optimal ker-
nel parameter.

2http://users.rsise.anu.edu.au/˜raetsch/data/
3For “diabetis” C was set to 30.

Table 1: Comparison of CPU time
Data Set l Method 1 Method 2 Method 3 Proposed
diabetis 468 1084.50 391.73 119.52 18.50
banana 400 766.54 195.34 39.31 17.17

breast-cancer 200 89.87 61.51 34.23 2.15
heart 170 32.71 21.28 17.37 1.70

thyroid 140 12.33 7.60 5.65 0.79

Table 2: Comparison of test error and the number of sup-
port vectors for “diabetis”.

Method 3 ProposedSet No.
σ∗ Error SVs σ∗ Error SVs

1 4.204 24.33 233 5.629 25.33 238
2 4.204 23.00 238 3.179 24.00 239
3 3.947 24.33 233 3.635 24.67 235
4 3.589 26.33 223 5.230 25.33 224
5 3.635 24.67 231 4.653 24.67 238

6. Conclusion

We have proposed a method of finding the optimal kernel
parameter of SVMs with the Gaussian kernel. We have
shown via experiments with the benchmark data that the
computation time can in fact be greatly reduced by using
the proposed method.

Acknowledgments

This research was partially supported by the 21st Cen-
tury COE Program ‘Reconstruction of Social Infrastruc-
ture Related to Information Science and Electrical Engi-
neering’.

References

[1] V. Vapnik, Statistical Learning Theory. New York:
Wiley, 1998.

[2] B. Schölkopf and A. J. Smola, Learning with Kernels.
Cambridge: MIT Press, 2002.

[3] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukher-
jee, “Choosing multiple parameters for support vector
machines,” Machine Learning, vol. 46, pp. 131–159,
2002.

[4] S. S. Keerthi and E. G. Gilbert, “Convergence of a gen-
eralized SMO algorithm for SVM classifier design,”
Machine Learning, vol. 46, pp. 351–360, 2002.

[5] T. Joachims, “Making large-scale support vector ma-
chine learning practical,” in Advances in Kernel
Methods: Support Vector Machines, B. Schölkopf,
C. Burges, and A. Smola, Eds. Cambridge, MA: MIT
Press, 1998.

[6] J. W. Daniel, “Stability of the solution of defi-
nite quadratic programs,” Mathematical Programming,
vol. 5, pp. 41–53, 1973.

241

