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Abstract—This paper presents a method to decompose
the bifurcation diagram for periodic oscillation in global
parameter space. As a tool of the decomposition, we use
ideal decomposition corresponding to algebraic factoriza-
tion. In order to realize the ideal decomposition, we pro-
pose the ideal quotient based on the symmetry of systems
and other efficient methods using the ideal quotient par-
tially. Further, we clarify the symmetries of the homoge-
neous equation in the harmonic balance method and pro-
vide a method for systematic decomposition.

1. Introduction

The advance in computer algebra system has led to re-
markable progress in applications of Gröbner base [1, 2].
We can find several applications to the analysis of nonlin-
ear circuit systems [3, 4, 5]. As far as the local bifurcation
is concerned, the analysis using Gröbner base is reported
[3, 4]. However, as for the global bifurcation very few re-
sults have been shown in [5, 6].

If our target systems are represented by algebraic equa-
tions, we can obtain the bifurcation diagram in global pa-
rameter space by using the Gröbner base of lexicographic
order [6, 7]. Using the algebraic representation of bifurca-
tion diagram, the reports [6, 7] decompose the global bi-
furcation diagram into sub-diagrams using algebraic fac-
torization The method provides the mode decompositions
of nonlinear systems using ideal decomposition. The ap-
proach makes clear also the relation between the symmetry
and bifurcations for nonlinear systems.

The purpose of this paper is to apply the method to
periodic oscillations on nonlinear circuit systems, and to
decompose the bifurcation diagram in global parameter
space. We use the harmonic balance method to obtain al-
gebraic determining equation of the periodic oscillations.
Using the approach we can decompose the bifurcation di-
agram by the ideal decomposition. Further the mode de-
composition reveals the symmetries which the periodic os-
cillations have.

In order to obtain good approximations of the periodic
oscillations, we have to consider many frequency compo-
nents in the harmonic balance method. However, the dif-
ficulty lies in the increase of the complexity of the com-
putation of Gröbner base of lexicographic order when the
number of variables and equations increases. To surpass its
limitation, we propose an efficient method of the ideal de-
composition by partially applying the ideal quotient based
on known symmetries. Although we first use known sym-

metries for the decomposition, we finally obtain the com-
plete decomposition of the bifurcation diagram by factor-
izations. Further, we propose a systematic ideal decompo-
sition method for the periodic oscillations using a homoge-
neous equation in the harmonic balance method.

2. Harmonic Balance Method

We consider a nonlinear circuit equation of nu dimen-
sions

du
dτ = h(u | λ) + e(τ), (1)

h = (h1, . . . , hnu )′ ∈ Rnu , e = (e1(τ), . . . , enu(τ))′ ∈ Rnu ,

u = (u1, . . . , unu )′ ∈ Rnu , λ = (λ1, . . . , λl) ∈ Rl,

where u is a state variable vector, e(τ) is a source vector
of period 2π/m (m ∈ Z>0), λ is a set of circuit parame-
ters, (·)′ denotes the transposition, h : Rnu × Rl → Rnu is a
vector of nonlinear functions which consists of polynomi-
als of u1, . . . , unu with coefficients in rational functions of
λ1, . . . , λl and R, Z>0 are the set of real numbers and posi-
tive integers, respectively.

We assume that Eq.(1) has a periodic solution u(τ) de-
fined by

u(τ) =

∞
∑

j=0

{

ψc j cos jτ + ψs j sin jτ
}

, (2)

where ψc j = (ψc j,1, . . . , ψc j,nu )′ ∈ Rnu , ψs j =

(ψs j,1, . . . , ψs j,nu )′ ∈ Rnu , ψs0 = 0. We assume that the
above solution can be approximated by a truncated Fourier
series with frequency component set κ ⊂ Z≥0,

u∗(τ) = K∗u(τ) =
∑

j∈κ

{

ψc j cos jτ + ψs j sin jτ
}

, (3)

where K∗ is a projection operator that expresses the trun-
cation of the Fourier series; u∗ = (u∗1, . . . , u∗nu

)′ ∈ Rnu , and
Z≥0 denotes the set 0, 1, 2, . . .. The substitution of Eq.(3)
into Eq.(1) gives

∑

j∈κ

[

jψs j,i − p j,i(ψ | λ) + ep j,i
]

cos jτ

+
∑

j∈κ

[

− jψc j,i − q j,i(ψ | λ) + eq j,i
]

sin jτ = 0, (4)

where p0,i(ψ | λ) = 1
2π

∫ 2π
0 hi(u∗(τ) | λ)dτ,
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p j,i(ψ | λ) = 1
π

∫ 2π
0 hi(u∗(τ) | λ) cos jτdτ ( j , 0),

q j,i(ψ | λ) = 1
π

∫ 2π
0 hi(u∗(τ) | λ) sin jτdτ,

ψ =
{

(ψc j,i, ψs j,i) | j ∈ κ, i = 1, . . . , nu
}

,

ep0,i(τ) = 1
2π

∫ 2π
0 ei(τ)dτ,

ep j,i(τ) = 1
π

∫ 2π
0 ei(τ) cos jτdτ ( j , 0),

eq j,i(τ) = 1
π

∫ 2π
0 ei(τ) sin jτdτ,

i = 1, . . . , nu.
From Eq.(4), We obtain algebraic equations of harmonic

balance
f (ψ) = f (ψ | λ, ê)

≡
[

jψs j,i − p j,i(ψ | λ) + ep j,i
− jψc j,i − q j,i(ψ | λ) + eq j,i

]

= 0, (5)

i = 1, . . . , nu, j ∈ κ, ê ≡
[

ep j,i
eq j,i

]

∈ Rn, n = |ψ| ,

where | · | denotes the number of the element of set.

3. Ideal Decomposition with Ideal Quotient

3.1. Decomposition of Ideal

The real variety V[ f (ψ)] is defined by the set of all real
solutions of Eq.(5). The fact shows that the bifurcation di-
agram of Eq.(5), depicting ψ versus (λ, ê), corresponds to
the real variety V[ f (ψ)]. In order to decompose the variety
V[ f (ψ)], we can use ideal decomposition [1, 2]. That is, if
the ideal I generated by f (ψ) which is denoted by 〈 f (ψ)〉 is
decomposed as

I = I1 ∩ · · · ∩ Ir, (6)
the variety V[ f (ψ)] which is denoted by V(I) is decom-
posed as

V(I) = V(I1) ∪ · · · ∪ V(Ir). (7)
The previous research used the Gröbner base of lexico-

graphic order for the ideal decomposition [6, 7]. How-
ever, the requirement of the tremendously huge computa-
tional cost for the lexicographic order Gröbner base pre-
vents the ideal decomposition of Eq.(6). To overcome the
difficulty, we use the ideal quotient for the ideal decompo-
sition. When the ideal I is represented by I = J ∩ K and
the ideal K is a given ideal, the ideal J is calculated by the
ideal quotient

J = I : K. (8)
In order to obtain the ideal K, we can use the symmetry of
nonlinear systems.

3.2. Ideal Quotient based on Symmetry

When we consider a finite group Γ, the symmetry is ob-
tained by a linear representation θ : Γ → GL(Rn), where
GL(Rn) is a set of invertible Rn×n matrices. When the sys-
tem is the following relation

f (θ(γ)ψ) = θ(γ) f(ψ), γ ∈ Γ, (9)
if ψ is a solution, θ(γ)ψ is also a solution. As the symmetric
solutions satisfy ψ = θ(γ)ψ for all γ ∈ Γ, the symmetric
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Figure 1: RLC resonance circuit.

solutions are constrained by the sum of ideals
∑

γ∈Γ
〈ψ − θ(γ)ψ〉 ≡
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∑

γ∈Γ
fγ | fγ ∈ 〈ψ − θ(γ)ψ〉




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
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





. (10)

The symmetric solutions are determined by f (ψ) = 0 and
the constraint of ψ − θ(γ)ψ = 0. Thus, the ideal which
represents the symmetric solutions is written by

〈 fΓ(ψ)〉 ≡ 〈 f (ψ)〉 +
∑

γ∈Γ
〈ψ − θ(γ)ψ〉. (11)

Because we consider 〈 f (ψ)〉 ⊂ 〈 fΓ(ψ)〉, the ideal 〈 fΓ(ψ)〉
which represents the asymmetric solutions is provided by
ideal quotient as follows:

〈 fΓ(ψ)〉 = 〈 f (ψ)〉 : 〈 fΓ(ψ)〉. (12)
Therefore, we can decompose the bifurcation diagram

using the ideal quotient based on the symmetry of systems.

4. Example of Decomposition

4.1. Circuit Equation
We apply the proposed method to an RLC resonance cir-

cuit shown in Figure 1. We assume that the magnetizing
characteristics of the nonlinear inductor is approximated by
cubic polynomial, i.e., i = c′φ+c′′φ3, where φ is a magnetic
flux and i is current. The scaled circuit equation is

du(τ)
dτ =

[

−(c1u1 + c3u1
3) − u2

X(c1u1 + c3u1
3)

]

+

[ 1
m E cos mτ

0

]

,(13)

u(τ) = (u1, u2)′, u1 =
ωφ

m
√

2InR
, u2 =

vc√
2InR

,

mτ = ωt, c1 = 1 − c3 =
mR
ω

c′,

c3 =
2m3En

2R3

Rn
2ω3 c′′, X = m

ωRC , E = mEm√
2InR

,

where En, In and Rn are values for the normalization. We
apply the harmonic balance method with 3 frequency com-
ponents, i.e., κ = {1, 2,3}. The u1(τ) and u2(τ) are respec-
tively approximated by

u∗1(τ) = ψc1 cos τ + ψs1 sin τ + ψc2 cos 2τ + ψs2 sin 2τ
+ψc3 cos 3τ + ψs3 sin 3τ, (14)

u∗2(τ) = K∗
[

Xc1u∗1 + Xc3u∗1
3
]

. (15)
We deal with the case of m = 1, i.e., we consider the
fundamental oscillation and the 2nd, 3rd harmonic oscil-
lations for the harmonic balance. From the equations,
we are able to obtain the simultaneous algebraic equa-
tions f (ψ) ≡ ( fc1, fs1, fc2, fs2, fc3, fs3)′ = 0, where ψ ≡
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(ψc1, ψs1, ψc2, ψs2, ψc3, ψs3)′ and the fc1, fs1, fc2, fs2, fc3, fs3
are equations by the harmonic balance method. In this ex-
ample, we cannot obtain the Gröber base of lexicographic
order by using computer algebra system Risa/Asir [8] be-
cause the computation requires very huge memory.

4.2. Symmetry of Target Oscillations
In order to decompose the bifurcation diagram using

ideal quotient, let us consider the symmetry of the target
oscillations. Based on the symmetry of e(t + π) = −e(t)
which is denoted by Γ−π, the linear representation θ

−π is
represented by

θ
−π =



























































1

1 0
−1

−1

0 1
1



























































. (16)

Because the symmetric solutions satisfy θ
−πψ = ψ, the

symmetric solutions have to satisfy ψc2 = ψs2 = 0. As a
result, we obtain an ideal

I13 ≡ I + 〈ψc2, ψs2〉 = 〈 f (ψc1, ψs1, 0, 0, ψc3, ψs3)〉, (17)
based on the symmetry. The ideal I13 corresponds to the os-
cillations which have only fundamental and 3rd harmonic
frequency components. Using the ideal I ≡ 〈 f (ψ)〉 and
ideal quotient by I13, we can decompose the ideal as

I = I13 ∩ I123, (18)
I123 ≡ I : I13

= 〈 f (ψ)〉 : 〈 f (ψc1, ψs1, 0, 0, ψc3, ψs3)〉. (19)
The ideal I123 corresponds to the oscillations which have
all frequency components. However, the computation of
the ideal quotient (19) requires more than 4GB memory
because the calculation of ideal quotient also contains the
calculation of Gröbner base [1], and we cannot obtain the
ideal decomposition yet.

5. Efficient Methods for Ideal Quotient

In order to calculate the ideal quotient (19), we propose
two efficient methods. First, assuming that an ideal J is rep-
resented by J = ∑s

i=1 Ji, the ideal quotient I : J is written
by

I : J = I :














s
∑

i=1
Ji















=

s
⋂

i=1
(I : Ji) . (20)

Using the relation (20), the ideal I123 is represented by
I123 = 〈 f (ψ)〉 : 〈ψc2, ψs2〉. (21)

Second, we introduce the partial ideal quotient. When
the ideal I is represented by I = ∑r

i=1 Ii, the ideal quotient
I : J is obtained by

I : J =














r
∑

i=1
Ii















: J =
r
∑

i=1
(Ii : J) , (22)

This relation indicates that the computation of ideal quo-
tient I : J is equivalent to the sum of the partial ideal quo-
tients Ii : J.
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Figure 2: Bifurcation diagram, the parameter E versus the
amplitude of the fundamental oscillation

√

ψ2
c1 + ψ

2
s1. (The

ideal I123 corresponds to the oscillations which have all fre-
quency components, and the ideal I13 corresponds to the os-
cillations which have only fundamental and 3rd harmonic
frequency components. c3 = 1.0, X = 100.0.)

Applying the relation (22) to Eq.(21), the ideal I123 is
represented by

I123 = 〈 fc2, fs2〉 : 〈ψc2, ψs2〉 + 〈 fc1, fs1, fc3, fs3〉, (23)
where we use the relation 〈 fc1, fs1, fc3, fs3〉 1 〈ψc2, ψs2〉
which is easily confirmed by the substitution of ψc2 =
ψs2 = 0 into fc1, fs1, fc3, fs3.

Using Eq.(23), we can obtain the ideal decomposition
(18) without memory overflow. After the ideal decomposi-
tion, we obtain the bifurcation diagram using Gröbner base
of block order and try further decomposition by factoriza-
tions. In this case we cannot decompose the ideal anymore.
The fact shows that the oscillation does not have more sym-
metries.

The decomposition of bifurcation diagram is shown in
Figure 2 which represents the relation between the param-
eter E and the amplitude of the fundamental oscillation
√

ψ2
c1 + ψ

2
s1 where c3 = 1.0, X = 100.0. The solid line cor-

responds to the ideal I123 and the dotted line corresponds
to the ideal I13. We can confirm that the intersections of
the decomposed diagrams corresponds to pitchfork bifur-
cations.

6. Decomposition of Homogeneous Equation

In the previous section, we consider the case that the fre-
quency m of the source is equal to 1 in Eq.(13). Let us con-
sider also the case of m = 2 and m = 3. The cases of m = 2
and m = 3 correspond to 1/2-subharmonic oscillations and
1/3-subharmonic oscillations, respectively. In order to clar-
ify the effect of the frequency m on the harmonic balance
equations, we define a homogeneous equation f̂ (ψ) by

f̂ (ψ) = f̂ (ψ | λ) ≡
[

jψs j,i − p j,i(ψ | λ)
− jψc j,i − q j,i(ψ | λ)

]

= 0, (24)

f (ψ) = f̂ (ψ | λ) + ê = 0. (25)
The equations f (ψ) of the harmonic balance for m = 1, 2
and 3 are represented as

f (ψ) = ( f̂c1, f̂s1 + E, f̂c2, f̂s2, f̂c3, f̂s3)′, (26)
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f (ψ) = ( f̂c1, f̂s1, f̂c2, f̂s2 + E, f̂c3, f̂s3)′, (27)
f (ψ) = ( f̂c1, f̂s1, f̂c2, f̂s2, f̂c3, f̂s3 + E)′, (28)

where f̂ (ψ) = ( f̂c1, f̂s1, f̂c2, f̂s2, f̂c3, f̂s3)′. Thus, the source
E of frequency m effects only the constant term of corre-
sponding frequencies. The fact indicates that the homo-
geneous equation f̂ (ψ) has the highest symmetry and that
each harmonic balance equations is obtained by breaking
of the symmetry.

In order to clarify the symmetries of the harmonic bal-
ance equations systematically, we consider the symmetries
of the homogeneous equation f̂ (ψ). In addition to the sym-
metry Γ−π, the homogeneous equation has Γ2π/m which is
defined by e(τ) = e(τ + 2π/m) for m = 1, 2, 3. The corre-
sponding linear representations for m = 2 and 3 are

θ2π/2 =



























































−1

−1 0
1

1

0 −1
−1



























































, (29)
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
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The symmetries Γ−π, Γ2π/2 and Γ2π/3 generate respectively
the partial ideal quotients

〈 f̂c2, f̂s2〉 : 〈ψc2, ψs2〉, (31)
〈 f̂c1, f̂s1, f̂c3, f̂s3〉 : 〈ψc1, ψs1, ψc3, ψs3〉, (32)
〈 f̂c1, f̂s1, f̂c2, f̂c2〉 : 〈ψc1, ψs1, ψc2, ψs2〉. (33)

By knowing the symmetries of homogeneous equations
in advances, we can obtain the ideal decomposition effi-
ciently.

In the case of m = 1, the symmetries Γ2π/2 and Γ2π/3
are broken because Eq.(32) and Eq(33) contain f̂c1 and f̂s1.
As a result, we use the symmetry Γ−π and obtain the ideal
decomposition as follows:

I = I13 ∩ I123, (34)
I13 = 〈 f (ψc1, ψs1, 0, 0, ψc3, ψs3)〉, (35)

I123 = 〈 f̂c2, f̂s2〉 : 〈ψc2, ψs2〉 + 〈 f̂c1, f̂s1 + E, f̂c3, f̂s3〉. (36)
In the case of m = 2, the symmetries Γ−π and Γ2π/3 are

broken because Eq.(31) and Eq.(33) contain f̂c2 and f̂s2.
As a result, we use the symmetry Γ2π/2 and obtain the ideal
decomposition as follows:

I = I2 ∩ I123, (37)
I2 = 〈 f (0, 0, ψc2, ψs2, 0,0)〉, (38)

I123 = 〈 f̂c1, f̂s1, f̂c3, f̂s3〉 : 〈ψc1, ψs1, ψc3, ψs3〉
+〈 f̂c2, f̂s2 + E〉. (39)

In the case of m = 3, only the symmetry Γ2π/2 is broken

because only Eq.(32) contains f̂c3 and f̂s3. As a result, we
use the both symmetry Γ−π and Γ2π/3, and obtain the ideal
decomposition as follows:

I = I3 ∩ I13 ∩ I123, (40)
I3 = 〈 f (0, 0, 0, 0, ψc3, ψs3)〉, (41)

I13 = 〈 f̂c1, f̂s1〉 : 〈ψc1, ψs1〉 + 〈 f̂c3, f̂s3 + E〉, (42)
I123 = 〈 f̂c2, f̂s2〉 : 〈ψc2, ψs2〉 + 〈 f̂c1, f̂s1, f̂c3, f̂s3 + E〉. (43)
We applied the derived symmetry to the ideal decom-

position and confirmed that the ideal decomposition is suc-
cessfully obtained. Further, we confirm that any other sym-
metries do not exist in the oscillation by computing the fur-
ther ideal decomposition. Thus, we can obtain the complete
mode decomposition of the bifurcation diagram.

7. Conclusion

This paper proposed a method for decomposing the bi-
furcation diagram of periodic oscillations using the ideal
decomposition. In order to realize the ideal decomposition,
we used the ideal quotient based on the symmetry of the
target system and make it more efficient by using the par-
tial ideal quotient. Further, we derived the symmetries of
homogeneous equations and clarified the symmetries of the
equations obtained by the harmonic balance method.
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