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Abstract—A device which detects terahertz (THz) elec-
tromagnetic waves with smaller in photon energy than vis-
ible lights and outputs a single photoelectron has been de-
veloped. Employing the devices as THz detectors might
provide high sensitivity to sensing and communication sys-
tems. The authors has proposed a receiver consisting of
three blocks. They are the detector, a frequency discrim-
inator separating the photoelectrons depending on their
momentum, a single-electron-transistor-based decoder es-
timating transmitted data from the streams of the separated
photoelectrons. The circuit simulator models of the blocks
are necessary to aid the design of the receiver. As a basis of
the model of the detector, a one-dimensional multi-particle
quantum system is modeled after a classical probabilistic
system composed of the Brownian particles in this paper.
We confirmed by the numerical experiments of the estab-
lished model that the Brownian particles moves probabilis-
tically according to the existence probability derived from
the wave function of the original quantum system.

1. Introduction

A kind of photo transistor which detects terahertz (THz)
electromagnetic waves and outputs a single-photoelectron
has been developed [1]. An island in the transistor is a car-
bon nano tube (CNT). The CNT makes it possible to de-
tect THz photons with smaller in energy than visible light
photons and output a single-photoelectron. Employing the
single-electron photo transistors (SEPTs) as the THz detec-
tors might provide high sensitivity to sensing and commu-
nication systems. In the simulation of the THz sensing and
communication systems with a conventional circuit simu-
lator, the SEPTs should be modeled as probabilistic ele-
ments in which photoelectrons behave like the Brownian
particles [2]. In the island of a CNT of small diameter,
electron-wave function is uniformly distributed in a cir-
cumferential direction. Then, the island is considered as
a one-dimensional potential system. The electrons in the
island increase and decrease one by one as the SEPT de-
tects THz photons. Then, several excess electrons or holes
exist in the island.

In this paper, we attempt to model multiple electrons
moving in the one-dimensional potential system by clas-
sical Brownian like particles.
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Figure 1: Structure of SEPT.

2. Single-Electron THz Detectors

Figure 1(a) shows the structure of an SEPT [1]. The
space between metal drain and source terminals are bridged
with a CNT. Since barriers are formed in the interfaces be-
tween the metal terminals and the CNT, the CNT becomes
an island. The energy level of the excess electrons in the
island is quantized as shown in Figure 1(b). Let the gap Ec

between the N-th and the (N + 1)-th energy levels be larger
than the energy ℏω of THz photons and ℏω be larger than
the energy difference between the N-th level and the level
of the source terminal. Excited by THz waves, an electron
in the island tunnels the barrier and move to the terminal.
In this way, the SEPT outputs a photoelectron.

As mentioned in Section 1, the island is considered as
a one-dimensional potential system. The following section
will introduce a theory for computing the motion of the
classical probabilistic particles which are the models of the
electrons in the CNT island.

3. Stochastic Quantization for Multi-Particle Quantum
Systems

We extend stochastic quantization of one-particle quan-
tum systems [3] to multi-particle systems [4]. For general-
ization, we discuss the expansion in three-dimension.

Forward and backward Langevin Equations for N clas-
sical Brownian particles in the three-dimensional space are
described by

dX = X(t + dt) − X(t) = BF(X(t), t)dt + dΓF(t) (1)- 534 -
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dX = X(t) − X(t − dt) = BB(X(t), t)dt + dΓB(t) (2)

where locations X of the N particles, the advection terms
BF/B, and the fluctuating forces are denoted by

X(t) = (x1(t), · · · , xN(t))T , (3)
BF/B(X(t), t) = (bF/B,1(X(t), t), · · · , bF/B,N(X(t), t))T , (4)
dΓF/B(t) = (dγF/B,1(t), · · · , dγF/B,N(t))T (5)

Their elements, i.e., location of particle i, its advection
term, and the random force acting on it are denoted by

xi(t) = (xi(t), yi(t), zi(t)), (6)
bF/B,i(X(t), t) = (7)

(bF/B,i,x(X(t), t), bF/B,i,y(X(t), t), bF/B,i,z(X(t), t)),
dγF/B,i(t) = (dγF/B,i,x(t), dγF/B,i,y(t), dγF/B,i,z(t)) (8)

i = 1, · · · ,N

The random forces are supposed to be the Markovian pro-
cess with zero average,

⟨dγF/B,i,p(t)⟩ = 0, (9)
⟨dγF/B,i,p(t)dγF/B, j,q(t + τ)⟩ = σ2δi, jδp,qδ(τ), (10)

i, j = 1 · · ·N, p, q : x, y, or z

Let the probability density function of the locations of
the N Brownian particles be denoted by ρ(X(t)). The for-
ward and backward Fokker Planck equations of ρ(X(t)) are
described by

∂

∂t
ρ(X(t)) = (11)− N∑

i=1

∇i · (bF,i(X(t), t) +
1
2

N∑
i=1

σ2∆i

 ρ(X(t))

∂

∂t
ρ(X(t)) = (12)− N∑

i=1

∇i · (bB,i(X(t), t) − 1
2

N∑
i=1

σ2∆i

 ρ(X(t))

In these equations, the following vector differential opera-
tors and Laplacian operators are introduced:

∇i ≡
(
∂

∂xi
,
∂

∂yi
,
∂

∂zi

)
(13)

∆i ≡ ∇i · ∇i =
∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

(14)

When we consider the N Brownian particles as quantum
mechanical particles of mass m in a potential V(X(t)), the
Schroedinger equation whose wave function ψ(X(t), t) and
ρ(X(t)) are related by

ρ(X(t)) = |ψ(X(t), t)|2 (15)

is described by

iℏ
∂

∂t
ψ(X(t), t) =

− ℏ2

2m

N∑
j=1

∆ j + V(X(t))

ψ(X(t), t) (16)

and
σ2 =

ℏ

2m
(17)

We determine the advection terms BF/B so that Eq. (15)
is satisfied. Let the wave function be given by the exponen-
tial function of the sum of the action W(X(t)) and a function
f (t) of time,

ψ(X(t), t) = exp(W(X(t))) exp( f (t)) (18)

Let the action W(X(t)) be described by

W(X(t), t) = R(X(t), t) + iS (X(t), t), i2 = −1 (19)

The real and the imaginary parts R, S must satisfy the fol-
lowing equations:

σ2∇iR(X(t), t) =
1
2

(bF,i(X(t), t) + bB,i(X(t), t)) (20)

σ2∇iS (X(t), t) =
1
2

(bF,i(X(t), t) − bB,i(X(t), t)) (21)

Since f (t) is a function of time, R and S may be

R = ℜ(log(ψ(X(t), t))) (22)
S = ℑ(log(ψ(X(t), t))) (23)

From Equations (20), (21), (22), and (23), we obtain the
advection terms BF/B.

4. Initial State and Superposition of Eigenstates

We consider a wave function satisfying a given initial
distribution.

Let eigenenergy and eigenfunction sets of a quantum
system with one particle be denoted by En and ϕn(x, t) :
complex function of location x and time t, n : quantum
number. Eigenenergy Eo

m,n and eigenfunction ψo
m,n(x1, x2, t)

of a two-particle quantum system without interaction be-
tween particles are given respectively by

Eo
m,n = Em + En (24)
ψo

m,n(x1, x2, t) = (25)
1
√

2
(ϕm(x1, t)ϕn(x2, t) − ϕm(x2, t)ϕn(x1.t))

When particles interact with one another, eigenenergies
Em,n and eigenfunctions ψm,n(x1, x2, t) may be approxi-
mated by the series of Eo

n,m and ϕo
n,m respectively as

E ≈ C · Eo (26)
E ≡ [ Em1,n1 Em2,n2 · · · EM,M ]T

Eo ≡ [ Eo
m1,n1

Eo
m2,n2

· · · Eo
M,M ]T

ψ ≈ C · ψo (27)
ψ ≡ [ ψm1,n1 ψm2,n2 · · · ψM,M ]T

ψo ≡ [ ψo
m1,n1

ψo
m2,n2

· · · ψo
M,M ]T
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C : M × M matrix with diagonal elements being 1

Let initial distributions of wave functions of two single-
particle systems A and B be given respectively by

ϕA(x, 0) =
∑

m

amϕm(x, 0) (28)

ϕB(x, 0) =
∑

n

bnϕn(x, 0) (29)

am, bn ∈ C

Then, the initial wave function of a system with two parti-
cles given initial distributions ϕA,B(x, 0) is described by

ψ(x1, x2, 0) =
∑

m

∑
n

ambnψ
o
m,n(x1, x2, 0) (30)

The above equation can be rewriten as

ψ(x1, x2, 0) = d · ψo(x1, x2, 0) (31)
d = [ am1 bn1 am2 bn2 · · · aMbM ]

By using above equation and Eq. (27), initial wave function
of multi-particle system with interaction is described by

ψ(x1, x2, 0) = d · C−1 · ψ(x1, x2, 0) (32)

Then, its time evolving wave function is given by

ψ(x1, x2, 0) = d · C−1 · ψ(x1, x2, 0) · e(t) (33)
e(t) ≡ (34)[

exp(−i
Em1 ,n1
ℏ

t) exp(−i
Em2 ,n2
ℏ

t) · · · exp(−i EM,M

ℏ
t)

]
5. Sample Trajectories

We attempt to compute trajectories of two electrons in a
one-dimensional two-particle system (in a CNT of limited
length).

In [4], trajectories of electrons were computed when
two-particle quantum system is in an eigenstate. In this
paper, trajectories are computed when two-particle quan-
tum system is in a mixture state. Then, state inter-
action is caused and the wave function becomes time-
independent. As a result, two electrons move globally in
a one-dimensional space between two barriers.

The potential V(x1, x2) of the quantum system (16) is
given by

V(x1, x2) = V(x1) + V(x2) +
λ

|x1 − x2|
(35)

The barrier in Fig. 1 is regarded here as infinitely high.
Then,

V(x) =
{

0, 0 < x < π
∞, otherwise (36)

In computing the wave function and trajectories of two
electrons, parameters are normalized as m = 1 and ℏ =
1. The system is considered as in a mixture state of nine

eigenstates. Given an initial state, a wave function is ob-
tained according to Section 4. By using the wave function,
trajectories of the two particles can be computed according
to Section 3.

Figure 2 shows the magnitude of the wave function at
various time in [1.0, 2.0] on the left column. The figure
shows also locations of the two electrons on the center col-
umn when the quantum noise or the random force Γ in Eqs.
(1) and (2) is zero and on the right column the locations
when Γ is given as in Eqs. (9), (10), and (17), along with
contour lines of the magnitude of the wave function. We
see in the figure that two electrons locate where the magni-
tude is relatively high, namely the points at which existence
probability of the particles is high, when Γ = 0 and the lo-
cations fluctuate when Γ , 0. Figures 3(a) and (b) present
the trajectories in a time interval of [0, 3] when Γ = 0 and
Γ , 0, respectively. We computed many sample trajecto-
ries. From the samples including Fig. 3(b), we confirmed
that the average path of the trajectories for Γ , 0 coincides
almost with the trajectory for Γ = 0.

6. Conclusions

The circuit simulator models of the blocks are necessary
to aid the design of the receiver. As a basis of the model
of the detector, a one-dimensional multi-particle quantum
system has been modeled after a classical probabilistic sys-
tem composed of the Brownian particles in this paper.

We confirmed by the numerical experiments of the es-
tablished model that the Brownian particles moves prob-
abilistically according to the existence probability derived
from the wave function of the original quantum system.
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Figure 2: Wave function and locations electrons.
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Figure 3: Sample trajectories of the two electrons.
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