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Abstract—A quantum system with a stub-structured po-
tential is considered to be usable as a frequency discrimina-
tor of terahertz wave receiver system. In this quantum sys-
tem, the electron wave is reflected or transmitted near the
connection area of the stub depending on the momentum
of the electron wave. In this study, by numerical analysis
of the propagation of the electron wave using the difference
method, we analyzed the change of reflection and transmis-
sion characteristics with respect to the momentum of the
electron wave. In addition, we calculated the sample tra-
jectories of electrons by stochastic quantization on which
circuit simulator model of terahertz wave receiver system
is based. By the analysis, we have confirmed that the quan-
tum system with a stub-structured potential functions as a
frequency discriminator.

1. Introduction

In recent years, terahertz wave communication has at-
tracted attention [1]. The terahertz wave communication
has an advantage that the terahertz band is not assigned
for sensing and wireless communications yet and provides
faster communication than current communication bands.
A terahertz wave receiver system is considered to be built
of a detection part [2], a frequency discrimination part [3],
and a decoding part [4]. A device converting received tera-
hertz waves into single-electrons by the photoelectric effect
has been developed [2]. By using this device for the de-
tection part, it is considered that a terahertz wave receiver
system featuring miniaturization and low power commu-
nication can be realized. The detection part outputs elec-
trons with momentum proportional to the frequency of the
received thrahertz wave. If the electrons are separated de-
pending on their momentum, frequency discrimination of
terahertz waves can be realized. Recently, it was simulated
that coupled electron wave guides function as a quantum
wave filter and can discriminate the frequency [3].

A semiconductor device with a stub-structured potential
can act as a transistor exploiting electron wave interference
[5]. When electron waves propagate on this semiconductor,
the electron waves are expected to be reflected or transmit-
ted near the connection area of the stub depending on the
momentum of the electron wave. In this study, we numer-
ically analyze the reflection and transmission characteris-

tics of the quantum system with a stub-structured potential
and investigate whether it has the frequency-discriminating
function [7]. By discretizing the space, we obtain eigen-
vectors and the eigenvalues as the wave eigenfunctions and
the eigenenergies. We reduce the amount of calculation by
treating the time-dependent parts of the electron waves as
a continuous function with eigenvalues as parameters. In
order to simulate the terahertz wave receiver system incor-
porated the frequency discriminator by using the existing
circuit simulator, the propagation of the wave must be rep-
resented by a sample electron trajectories [3]. We calcu-
lated the sample trajectories based on Nelson’s stochastic
quantization [6].

2. The Schrödinger equation

The Schrödinger equation describes the motion of quan-
tum particles. When (x, y) and t are independent vari-
ables of spatial coordinates and time respectively, the two-
dimensional Schrödinger equation of the quantum particle
whose mass is m is given by

iℏ
∂ψ(x, y, t)

∂t
= Hψ(x, y, t) (1)

H = − ℏ
2

2m

(
∂2

∂x2 +
∂2

∂y2

)
+ V(x, y) (2)

where ℏ is the Planck constant and V(x, y) is the potential.
The solution ψ(x, y, t) of Eq.(1) is called the wave function.
The square of the absolute value of ψ(x, y, t) represents the
existence probability of the quantum particle.

3. Nelson’s stochastic quantization

Nelson’s stochastic quantization represents quantum
particles by classical probabilistic particles (Brownian par-
ticles) moving according to the probability density given by
|ψ|2 [6]. Therefore, the motion of the quantum particles can
be described by the Langevin equation. By this method, we
can compute sample trajectories of the quantum particles,
which is difficult to compute from the wave function of the
Schrödinger equation. Langevin equations for computing
trajectories in the (x, y)-plane are expressed as follows:

dx
dt
= bx(x, y, t) +

√
ℏ

2m
Γx(t) (3)
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dy
dt
= by(x, y, t) +

√
ℏ

2m
Γy(t) (4)

If the right hand sides of equations (3) and (4) are defined
in the following way, the probability distribution of the par-
ticles is equal to |ψ|2. The drift terms bx(x, y, t)，by(x, y, t)
are the frictional force that the particle receives. They are
given by

bx(x, y, t) = ℜ
(
ℏ

m
∂

∂x
lnψ

)
+ ℑ

(
ℏ

m
∂

∂x
lnψ

)
(5)

by(x, y, t) = ℜ
(
ℏ

m
∂

∂y
lnψ

)
+ ℑ

(
ℏ

m
∂

∂y
lnψ

)
(6)

where ℜ and ℑ represent the real and imaginary parts re-
spectively. Γx(t)，Γy(t) are random forces that the particle
receives. Γx(t)，Γy(t) are independent white noises satisfy-
ing

⟨Γx(t)Γx(t0)⟩ = δ(t − t0) (7)

⟨Γy(t)Γy(t0)⟩ = δ(t − t0) (8)

⟨Γx(t)Γy(t0)⟩ = 0 (9)

4. Stub-structured potential

In this study, we analyze a quantum system with a stub-
structured potential V(x, y) shown in Figure 1. The shaded
area indicates the high potential area. L1, L2, L3 are the
lengths that determine the shape of the potential. When
electron comes in from a point marked with “a”, propa-
gation of the electron wave in the order of “abc” is called
transmission and propagation in the order of “aba” is called
reflection. Since this quantum system has a stub, part of
the electron wave is expected to be reflected or transmit-
ted near the connection area of the stub by the electronic
wave interference. By changing the momentum of elec-
trons and the shape of the potential, the transmission rate
may be changed. Then this quantum system is considered
to function as a frequency discriminator.
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Figure 1: Stub-structured potential

5. Method of numerical analysis

5.1. Derivation of the wave function by difference method

In the stub-structured potential in Figure 1, the potential
height is not constant in both directions. Since it is difficult
to analytically solve the Schrödinger equation of the sys-
tem with such a potential structure, we use the difference
method to derive the wave function. We separate the wave
function into terms of position and time.

ψ(x, y, t) = ψ(x, y) exp(−i
E
ℏ

t) (10)

Then, the Schroedinger equation (1) can be written as a
time-independent Schrodinger equation.

Eψ(x, y) = Hψ(x, y) (11)

We discretize the potential region in Figure 1 with respect
to space. The spatially discretized wave function have val-
ues only on discrete points. By approximating the partial
derivatives of Hamiltonian H by difference between values
at the discrete points, equation (11) can be expressed using
a vector, a matrix, and its eigenvalue as

EnΨn = HΨn (12)

where H is the matrix representation of the Hamiltonian
H, Ψn and En are eigenvector and eigenvalue of H, respec-
tively. The eigenvector Ψn whose elements are complex
values on the discrete points corresponds to the wave func-
tion ψ.

5.2. Derivation of the time-evolving wave function

By using eigenvalues En and eigenvectors Ψn, the time-
evolving wave function Ψ is given by

Ψ =
∑

n

cnΨn exp(−i
En

ℏ
t) (13)

where n is a quantum number. Given the initial distribution
Ψ0 of Ψ as

Ψ0(x, y) =
1√

2πσ2
xσ

2
y

exp
(
− (x− x0)2

4σ2
x
− (y− y0)2

4σ2
y
+ ikx0+ iky0

)
(14)

cn of equation (13) is given by

cn = Ψn ·Ψ0 (15)

In equation (14) (x0,y0) are initial average position, kx0，ky0
are initial average wave numbers, σ2

x，σ
2
y are variances of

the position.- 547 -



6. Numerical experiment

In this study, planck constant is ℏ = 1, mass of electron
is m = 1 for simplifying the calculation. We set the pa-
rameters in Figure 1 as L1 = 0.3, L2 = π/12, L3 = 0.9,
and V0 = 10000. The potential was divided into 600 in the
range of 0 ≤ x ≤ Lx, and into 50 in the range of 0 ≤ y ≤ Ly.
Then we calculated En and Ψn. The initial wave distribu-
tion was Gaussian wave paket (14) with the parameters of
x0 = 3，y0 = 0.65，ky0 = 0，σx = 0.5，σy = 0.002. We
calculated the time-evolving wave function by the method
described in section 5.

Figure 2 shows the transmission rates plotted against the
initial average momentum of an electron when L2 = π/12.
Figure 3 also shows the transmission rates when L2 = π/4.
Transmission rate T is the integral of the existence prob-
ability obtained from the normalized wave function with
respect to the region on the right side of the stub, that is,

T =
∑

Lx+L3
2 ≤x

∑
y

Ψ∗Ψ∆x∆y (16)

at t = (9 − x0)/kx0, where ∆x, ∆y are the lattice constant.
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Figure 2: The transmission rates against the initial average mo-
mentum of an electron (L2 = π/12)
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Figure 3: The transmission rates against the initial average mo-
mentum of an electron (L2 = π/4)

As shown in figures 2 and 3, the transmission rate
greatly changed with momentum. In addition, the transmis-

sion characteristics change when the length L2 of the stub
changes. It is expected that the electrons can be separated
to the left and right if electrons have momenta at which the
transmission rates are almost 0 and 1. Figure 4 shows the
existence probability of an electron when L2 = π/12, the
initial average momentum in the x direction is ℏkx0 = 6,
and time is t = 1. Figure 5 shows the existence probability
of an electron when the initial average momentum in the x
direction is ℏkx0 = 12, and time is t = 0.6.

Figure 4: The existence probability of an electron (kx0 = 6, t = 1)

Figure 5: The existence probability of an electron (kx0 = 12,
t = 0.6)

We calculated the sample trajectories of electrons by nu-
merically integrating Langevin equation set (3), (4). Fig-
ures 6 and 7 show the sample trajectories of electrons (5
samples) when ℏkx0 is 6 and 12, respectively.

Figures 4 and 6 show that electrons move rightward
while they return to the leftward in figures 5 and 7. From
the above observation, it was confirmed that electrons can
be separated to the left or right of the quantum system de-
pending on the difference in momentum.

Figures 8 and 9 show the histogram of the distribution
of x coordinates of the trajectories around y = 0.65, at t =
1 and 0.6 when initial x-directional average momentum is
ℏkx0 = 6 and 12, respectively. The solid lines shown in Fig-
ures 8 and 9 are the existence probability |ψ(x, 0.65, 1)|2,
|ψ(x, 0.65, 0.6)|2. From Figures 8 and 9, it is found that the
distribution of the position of electrons obtained by com-
puting the sample trajectories of the electrons corresponds
to the curve of the existence probability |ψ|2.- 548 -
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Figure 6: The sample trajectories of electrons (kx0 = 6)
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Figure 7: The sample trajectories of electrons(kx0 = 12)

7. Conclusions

In this study, the quantum system with stub-structured
potential was analyzed for the application to frequency
discrimination in terahertz wave receiver system. More-
over, for modeling the quantum system in circuit simula-
tion of the terahertz wave receiver system, we derived the
Langevin Equations whose numerical solutions are sample
trajectories of electrons. From these results of the analy-
ses, we confirmed that the quantum system with the stub-
structured functions as a frequency discriminator. It was
also confirmed that the wave function by the numerical
analysis and the sample trajectories of the electrons rep-
resent equivalent results.

Our future works include establishing approximation
theory on the stub-structured quantum system by a macro-
scopic analog distributed parameter filter.
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