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Abstract—We numerically studied the chaotic dynam-
ics of a laser diode (LD) system with optical injection,
where an additional signal is applied to the drive current
of the master LD. We found that the orbital instability of
the LD system is enhanced by applying a pseudorandom
signal, and the result showed good agreement that of linear
stability analysis. Then we investigated the response of the
orbital instability to the frequency range of the applied sig-
nal and confirmed a similar trend between this response and
the spectrum of the LD system. Moreover, we compared
the effect of using a chaotic signal and a band-limited pseu-
dorandom signal having a similar spectrum to the chaotic
signal as the applied signal. We showed that the spectrum
of the applied signal is a factor affecting the orbital insta-
bility of an LD system, and that the use of a pseudorandom
signal as the applied signal more greatly enhances the or-
bital instability than the use of a chaotic signal.

1. Introduction

The oscillation of a laser diode (LD) can be easily made
unstable and chaotic by optical feedback from an external
cavity, optical injection from another LD, and so forth [1].
If an LD is subjected to optical injection from a chaotic
LD, the chaotic dynamics of the two lasers can synchronize
(chaos synchronization). Chaotic LDs have potential appli-
cations in multiple fields because of their high-frequency
oscillation and wide bandwidth. A typical potential appli-
cation is chaotic secure communication, which has been
studied widely, and candidate schemes using chaos syn-
chronization have been proposed [2, 3]. However, it is diffi-
cult to protect messages against eavesdropping by a forged
receiver using chaotic synchronization.

On the other hand, we have proposed a digital commu-
nication scheme that does not depend on chaos synchro-
nization and uses the difference in the orbital instability of
a laser system as a binary digit [4]. In this scheme, it is
necessary to effectively vary the orbital instability of the
laser system to achieve communication without a bit error.
In this article, an approach to enhancing the orbital insta-
bility of a chaotic optical injection LD system by applying
pseudorandom and chaotic signals to the drive current is

numerically described.
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Figure 1: Schematic diagram of chaotic laser system.

2. Optical injection system with applied signal

Figure 1 shows the schematic setup of the chaotic LD
system with optical injection, which consists of a mas-
ter LD (LD1) and a slave LD (LD2). A variable atten-
uator (VA) is inserted between LD1 and LD2 to control
the amount of light injected into LD2. An optical iso-
lator (OI) ensures that LD1 is isolated from LD2. The
LDs are pumped by a power supply (PS), and LD1 has
a signal generator (SG), which applies an additional sig-
nal to the drive current. The dynamical characteristics of
LD1 and LD2 without an applied signal can be described
by the following rate equations using the complex field
E(t) = A(t) exp(−iϕ(t)) and the carrier density above the
value for a solitary LD n(t) = N(t) − Nsol [5, 6].

dA1,2

dt
=

1
2

GNn1,2(t)A1,2(t)

+ κinjA1(t − τinj) cos[ω0τinj + ϕ2(t) − ϕ1(t − τinj)],
(1)

dϕ1,2

dt
=

1
2
αGNn1,2(t)

− κinj
A1(t − τinj)

A2
sin[ω0τinj + ϕ2(t) − ϕ1(t − τinj)],

(2)
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dn1,2

dt
= (p1,2 − 1)Jth − γn1,2(t) − [Γ +GNn1,2(t)]A2

1,2(t).

(3)

Here, subscripts 1 and 2 denote LD1 and LD2, respectively.
The second term on the right-hand side of eqs. (1) and (2)
represents the optical injection from LD1 to LD2. GN , α,
γ, and Γ are the differential optical gain, the linewidth en-
hancement factor, the carrier decay rate, and the cavity de-
cay rate, respectively. The angular frequency of a solitary
laser is described as ω0 = 2πc/λ0, where c is the velocity
of light and λ0 is the wavelength. The injection coefficient
from LD1 to LD2 is described as κinj = (1 − r2

0)rinj/r0τin,
where r0 is the reflection rate of the incident laser facet,
rinj is the fraction of the output of LD1 coupled into LD2,
and τin is the round-trip time in the inner cavity. p1,2Jth is
the drive current, where Jth = γNsol is its value at the soli-
tary laser threshold. In the following section, we consider
the case of an additional signal applied to the drive cur-
rent of LD1. In each case, the average current is modeled
so as to be p1Jth. In our simulation, the following values
are assigned to the parameters; GN = 2.142 × 104[s−1],
α = 5.0, ω0 = 635[nm], γ = 0.909[ns−1], Γ = 0.357[ps−1],
r0 = 0.556, τin = 8.0[ps−1], p = 1.11, Nsol = 1.708 × 108,
τinj = 5.0[ns].

In this study, we calculate the exponent, which we call
the orbital expansion exponent, from a chaotic laser out-
put to quantify the orbital instability of the chaotic laser.
This exponent is calculated by simplifying the method of
calculating the Lyapunov exponent proposed by Sato et al.
[7]. First, the laser output is sampled at intervals of 10ps
over 100ns and expressed as (a1, a2, . . . , ak−1, ak). Next,
we consider the reconstruction of a phase plane with delay
coordinates, i.e., a point on the plane is given as (ai, ai+1)
(i = 1, 2, . . . , k − 1). We consider the point (ai′ , ai′+1)
(i′ = 1, 2, . . . , k − 1) as a point near (ai, ai+1). The dis-
tance εi,i′ between these two adjacent points is assumed to
be less than ā · 10−2, and the orbital expansion exponent is
described as

λ =
1
M

k−1∑
i,i′=1

0<εi,i′≤ā·10−2

i<i′

ln

∣∣∣∣∣∣εi+1,i′+1

εi,i′

∣∣∣∣∣∣ , (4)

where M is the number of εi,i′ satisfying 0 < εi,i′ ≤ ā ·10−2.

3. Orbital instability for applied pseudorandom signal

Here, we perform linear stability analysis [1, 8] to con-
sider the steady-state solutions for eqs. (1)-(3), that is,
A1(t) = A1s, A2(t) = A2s, ϕ1(t) = (ω1s − ωth)t, ϕ2(t) =
(ω2s − ωth)t, n2(t) = n2s. From eqs. (1)-(3),

ω2sτinj = ωthτinj − κinjτinj ·
A1s

A2s
·
√

1 + α2 sin(ω2sτinj + ψ),

(5)

(a)

(b)

Figure 2: Bifurcation diagram and orbital expansion exponent λ2 of the
LD output versus injection rate rinj. The dots and crosses indicate extrema
of intensity and λ2, respectively. (a) Bifurcation diagram for LD2 when no
signal is applied to the drive current of LD1, and (b) that for LD2 when a
pseudorandom signal with σ1 = 1.0 is applied to the drive current of LD1.

ψ = tan−1 α − ω2sτinj + cos−1
(−GN,2n2sA2s

2κinjA1s

)
. (6)

Here eq. (5) is expressed in terms of ω2sτinj, and the solu-
tions correspond to oscillation modes of the laser system.
In other words, the stable solutions indicate the points of in-
tersection between the linear function on the left-hand side
and the sinusoidal function on the right-hand side. The am-
plitude of the sinusoidal function depends on the injection
coefficient κinj. If κinj is sufficiently small, eq. (5) has at
most a finite number of solutions, that is, the laser dynam-
ics is expected to exhibit periodic or quasi-periodic oscil-
lation. On the other hand, if κinj is sufficiently large, eq.
(5) has an infinite number of solutions, that is, the laser dy-
namics is expected to be more complex. Since the number
of solutions converges with increasing κinj, the complexity
of the laser dynamics should also gradually converge.

To verify above prediction, the bifurcation diagram plot-
ted against the injection rate rinj is shown in Fig. 2. The
dots and crosses indicate extrema of the intensity and or-
bital expansion exponent λ2 of LD2, respectively. Figure
2(a) shows the bifurcation diagram for LD2 when no sig-
nal is applied to the drive current. For a small injection rate
(rinj ≤ 0.01), the laser output oscillates periodically and the
corresponding λ2 is small. As the injection rate increases,
the dynamics becomes complex and evolves into chaos for
injection rates of 0.04 and 0.05, then λ2 become larger. As
rinj is further increased, however, periodic windows within
chaotic bands can be observed, whose orbital expansion ex-
ponents are small. Although this result appears to contra-- 407 -



dict the above prediction, chaotic dynamics is observed in
the periodic windows by perturbing the phase ψ in eq. (5).

The phase ψ is expressed as a function of the LD1 output
A1s, then we modulate the LD1 output by using a pseudo-
random signal to perturb the phase ψ. Here, we consider
the application of a pseudorandom signal to the drive cur-
rent of LD1, which is normally distributed with mean p1Jth
and variance σ2

1. In our simulations, the signal is gener-
ated by the xorshift algorithm [9]. Figure 2(b) shows the
bifurcation diagram for LD2 when a pseudorandom signal
with σ1 = 1.0 is applied to the drive current. For a small
injection coefficient (rinj ≤ 0.01), the laser output oscillates
periodically similarly to in Fig. 2(a). As rinj is increased,
the dynamics evolves into chaos. The corresponding λ2
is gradually increased and converges as predicted above.
Then the potential chaotic dynamics in LD2 is actualized
by applying a pseudorandom signal to the drive current of
LD1.

Next, we investigate the frequency response of the or-
bital expansion exponent to the frequency range of the ap-
plied pseudorandom signal. Figure 3 shows the orbital ex-
pansion exponent of LD2 plotted against the injection rate
rinj. The crosses indicate that no signal is applied to the
drive current of LD1. For the other plots, the drive cur-
rent of LD1 has a band-limited pseudorandom signal fil-
tered by a band-pass filter, which has a Dirichlet window
in the range f GHz to f + 0.5GHz. In each case, the aver-
age drive current is p1Jth. The orbital expansion exponent
λ2 increases for rinj > 0.05 upon applying the signal. When
the cutoff frequency is f = 3.0GHz or f = 4.0GHz, it ap-
pears that λ2 is increased by the greatest amount.
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Figure 3: Orbital expansion exponent of LD2 versus injection rate rinj
for an applied pseudorandom signal filtered by a band-pass filter within
the frequency range f to f + 0.5GHz.

In Fig. 4, the Fourier spectra of chaotic LD2 and the
frequency response of λ2 are plotted in the same plane as
that in Fig. 2(b) for (a) rinj = 0.06 and (b) rinj = 0.07,
which are typical cases where the dynamics of LD2 with-
out a pseudorandom signal is a periodic window and chaos,
respectively. In each case, the spectrum has a peak at ap-

proximately 3.5GHz and a low power for higher and lower
frequencies. The plots of λ2 have a peak at approximately
3.5GHz, and the distribution of λ2 is similar to the spectrum
of LD2. Therefore, it is expected that the orbital instability
can be increased efficiently by applying a pseudorandom
signal whose spectrum is similar to the Fourier spectrum of
chaotic LD2 to the drive current.
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Figure 4: Fourier spectra of LD2 and orbital expansion exponent λ2
plotted against f when (a) rinj = 0.06 and (b) rinj = 0.07. Solid lines are
Fourier spectra and crosses are plots of λ2.

4. Orbital instability for various applied signals

In this section, we investigate factors efficiently increas-
ing the orbital instability of a chaotic LD, then it is clarified
whether the applied signal requires chaotic characteristics
or only a spectrum similar to that of chaos. Here, we con-
sider three types of applied signal; pseudorandom, chaotic,
and complex signals.

The orbital expansion exponent λ2 plotted against rinj is
shown in Fig. 5, where triangles indicate λ2 without an
applied signal and circles, squares, and diamonds indicate
λ2 with complex, pseudorandom, and chaotic signals, re-
spectively. The applied chaotic signal is independent of the
dynamics of the LD system in Fig. 1, which is generated
by another master-slave LD system with a pseudorandom
signal (σ1 = 1.0) and a corresponding rinj. The standard
deviation of the pseudorandom signal in Fig. 5 is 1.0. The
complex signal, which is generated from the pseudoran-
dom signal with σ1 = 1.0, is filtered to fit the spectrum
of the aforementioned applied chaotic signal. The average
drive current for each signal is normalized as p1Jth. For
a low injection rate (rinj ≤ 0.05), in Fig. 5, λ2 gradually
increases with increasing rinj for each signal, but the com-
plex and pseudorandom signals tend to be more effective- 408 -



for increasing λ2 than the chaotic signal. This tendency is
particularly apparent for rinj > 0.10. In this range, λ2 for
the pseudorandom signal remains stable at approximately
1.1. However, λ2 for the complex signal further increases
then converges for rinj > 0.15.
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Figure 5: Orbital expansion exponent of LD2 versus injection rate rinj
for various applied signals.

Next, the standard deviation of the applied signals is con-
sidered. The applied chaotic signal in Fig. 5 has a stan-
dard deviation of 0.38. On the other hand, the complex
signals generated from the original pseudorandom signals
with σ1 = 0.10, 0.50, and 1.0 have standard deviations of
0.18, 0.83, and 1.67, respectively. The orbital expansion
exponents λ2 for these applied signals are compared in Fig.
6. When the complex signals are applied, λ2 increases with
increasing value of σ1 for the corresponding original pseu-
dorandom signal. On the other hand, although the chaotic
signal has a larger standard deviation than the complex sig-
nal for σ1 = 0.10, it has little effect on increasing λ2. These
findings suggest that a factor that increases λ2 is the spec-
tral shape of the applied signal and that the property of
pseudorandom signal is more important than that of chaos.
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Figure 6: Orbital expansion exponent of LD2 versus injection rate rinj
for applied complex signals. σ is the standard deviation of the correspond-
ing original pseudorandom signal.

5. Summary

In this paper, we studied a chaotic system consisting of
two LDs (LD1 and LD2) by calculating the orbital expan-
sion exponent to quantify the orbital instability of the dy-
namics. The output of LD1 is injected into LD2 unidirec-
tionally, and an additional signal is applied to the drive cur-
rent of LD1. For certain injection rates, periodic windows
are observed in the dynamics of LD2, then chaotic dynam-
ics appears upon applying a pseudorandom signal to the
drive current of LD1. Then, we considered the effects of
applying a pseudorandom signal, an external chaotic sig-
nal independent of the entire optical system, and a filtered
pseudorandom signal with a similar spectrum to the Fourier
spectrum of chaotic LD2, called a complex signal. It is
shown that the orbital expansion exponent can be increased
more effectively by applying pseudorandom and complex
signals than by applying a chaotic signal. In the case of
a complex signal, the orbital expansion exponent increases
with increasing standard deviation. However, the orbital
expansion exponent of LD2 with an applied chaotic signal
is smaller, although the chaotic signal has a larger standard
deviation than the complex signal. Therefore, it is con-
sidered that a pseudorandom signal has a greater effect on
enhancing the orbital instability of an LD system than a
chaotic signal.
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