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Abstract

This paper presents a sensitive particle swarm optimizer
(SPSO) for maximum power point tracking in photovoltaic
power generation under partial shading condition. The cost
function corresponds to the voltage-versus-power charac-
teristic of the photovoltaic power generation. Depending
on external environment, the cost function and its MPP
vary in a complicated way. In order to track the dynamic
MPP, the PSO has two strategies: the particles consist-
ing of sampled voltages for real-time operation, we do not
use the past history for adaptation to dynamic environment.
Performing numerical experiments for basic artificial prob-
lems, the efficiency of the SPSO is confirmed.

1. Introduction

This paper studies an application of the particle swarm
optimizer (PSO) to the maximum power point tracking
(MPPT) of a photovoltaic power generation system under
partial shading condition. The cost function corresponds
to a voltage-versus-power characteristic of a photovoltaic
power generation system and the maximum value of the
cost function is the maximum power point (MPP). In real
environment, depending on insolation, the cost function be-
comes a complex multi-model shape and the MPP becomes
time-variant. The MPPT is an important problem in renew-
able energy supply technology and has been studied exten-
sively [1]-[4]. In the studies, the most popular hill climbing
method aims mainly at search of unimodal power charac-
teristics in a time-invariant environment. It is not easy to
track the dynamic MPP of multi-model cost function.

On the other hand, the PSO is well known as a
population-based search algorithm. It is simple in concept,
is easy to implement, and has been applied to optimization
problems in various systems, e.g., nonlinear dynamical sys-
tems [6], signal processors [5], and renewable energy sys-
tems [7]-[9].

However, when PSO is applied to the Dynamic MPPT
(DMPPT), it is difficult to track Dynamic MPP because
past information adversely affects the update formula.

In order to realize a PSO-based DMPPT, this paper
presents the sensitive particle swarm optimizer (SPSO).
Furthermore, we propose an algorithm that does not use
past history in order to escape from the local optima. Using

Figure 1: The paralleled PV system

the simple examples, the algorithm performance is evalu-
ated.

2. Dynamic cost function

We define dynamic cost function. This paper uses pa-
radelle photovoltaic (PV) system. Fig. 1 shows the parallel
PV system. Fig. 2 shows dynamic cost function and MPP
position. N cells connected in series with the bypass diode.
M solar cell modules connected in parallel are controlled.

The cost function is based on the following voltage-
current characteristics derived from a circuit model of solar
cell [1] [2]

ijm = f (vjm, Sjm(t)) = Iphm(t)− Irr

(
exp

( qvj

kAT

)
− 1

)

Iphm(t) = Iscr
Sjm(t)

100
, j = 1 ∼ NC , m = 1 ∼M

(1)
where vjM [V] and ijM [A] are the terminal voltage, cur-
rent of the j-th cell and M is the number of dimensions,
respectively. The parameters and symbols are defined/fixed
as the following.

Sj(t)[mW/cm2] insolation signal of the j-th cell.
NC the number of cells.
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Figure 2: Dynamic cost function. t1 < t2.

Iscr = 2.52 [A]: cell short-circuit current.
Iph [A] the photo-generated current.
Irr

.= 20 [µA]: the cell reverse saturation current.
q

.= 1.6× 10−19 [C] electronic charge.
k

.= 1.38 [J/◦K] the Boltzman’s constant.
T = 301[◦K]: cell temperature of the cell.
A = 1.92: the ideality factor.
The dynamic (time-variant) voltage-power characteris-

tics of the PV array is given by

P = (V1, V2) = V1I1 + V2I2 = F (V, t)
V1 = v11 + v12 + v13

v2 = v21 + v22 + v23

v11 = r11(i11, t) = g−1(v11, S11(t))
...
vmNc = rmNc(imNc, t) = g−1(vmNc, SmNc(t))

(2)

where vmNc = g−1(vmNc, t) is the inverse function of
v = r(imNc, t) for i. F (vmNc, t) is the cost function and
its MPP is the target of the search. The shape of the cost
function depends on the insolation signal SmNc(t).

3. MPP search algorithm

Normal PSO controls multiple particles simultaneously.
However, in an actual system, at a certain time. Since the
operating point can take only one value, a plurality of op-
erations. It is difficult to generate a plurality of particles
corresponding to a voltage.

In order to approximate this, K sample values of
(V1, V2) in the past history are defined as K imaginary par-
ticles, thereby a virtual particle group is constituted. In
order to associate the number of particle positions with the

sampling time.

1 ≤ n ≤ N 2 ≤ n ≤ N + 1
X1=x(1) X1=x(2)
X2 = x(2) X2=x(3)
...

...
XN=x(N) XN=x(N + 1)

There are various combinations of particles. In this paper,
we use ring topology. In consideration of this, the parame-
ters are set as follows.

nmax = 500: the operating step.
N : number of particles.
X(n): position of particles.
Y (n): velocity of particles.
Lbi: position of Local best (Lbest).
FLbi: the evaluation value of Lbest.
F (x(n)): the fitness.
In DMPPT, particles may be captured by local optima.

On the other hand, we propose a method that does not hold
past information. Each step is defined below.
Step 1 (initialization): Take N sample values. Let t = 0 be
the number of steps. The sample value is taken as the initial
value. Update the position and velocity of N particles.
Step 2 (Lbest update):

Lbi ←Xj(n) if Xj(n) > Lbi, j ∈ {i− 1, i, i + 1}
Lbi ← Lbi otherwise

(3)
Step 3 (Update of velocity and position):

Y (n)←WY (n) + C(Lbi −X(n))
X(n)←X(n) + Y (n) (4)

where W and C are deterministic parameters. After trial-
and-errors, we have fixed the parameter values: C=1.4,
W=0.7
Step 4 (local best reset):

Lbi ← 0
FLbi ← 0 (5)

Step 5: Let n ← n + 1, let i ← n mod 10, go to Step 2,
and repeat until the maximum search step limit n = 500.

4. Numerical Experiments

We apply the SPSO to two examples of artificial DMPPT
problems. The example is based on the decreasing insola-
tion signal.

Fig. 3 shows snapshots of tracking process. The blue
mark is MPP. Fig. 4 shows tracking process of SPSO. Fig.5
shows instantaneous tracking efficiency of SPSO. Fig. 6
and Fig. 7 shows result local PSO (LPSO).

LPSO cannot track MPP. Because particles were in-
fluenced by past history. Therefore, the particles search
stopped.
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Figure 3: Decreasing insolation signal and snapshots of the
dynamic cost function with SPSO. (a) 1 ≤ n ≤ 10. (b)
91 ≤ n ≤ 100. (c) 191 ≤ n ≤ 200. (d) 291 ≤ n ≤ 300.
(e) 391 ≤ n ≤ 400. (f) 491 ≤ n ≤ 500.

However, SPSO was able to search longer than LPSO by
resetting past information. So, the particles were able to
escape from the local optima. We define the instantaneous
tracking efficiency (ITE) and average tracking efficiency
(ATE).

ITE(n) =
f(X(n), n)

MPP
× 100 [%] (6)

ATE =
1

nmax

nmax∑
n=0

ITE(n) [%] (7)

tab. 1 shows average for 100 different initial values.
ATE was confirmed that SPSO is more efficient than

LPSO. : ATE = 89.8 for SPSO, ATE = 86.7 for LPSO.

5. Conclusions

The SPSO is presented and is applied to the DMPPT in
this paper. In order to track MPP of the dynamic cost func-
tion, the SPSO uses imaginary particles, the flexible Lbest
reset and don’t use Pbest. Performing numerical experi-
ments for basic artificial the problems. the efficiency of the
SPSO is confirmed.

Future problems include optimal setting of parameter
values for each problems, analysis of the tracking process,

and fabrication of a test hardware for laboratory experi-
ments.

Figure 4: Tracking process of SPSO.

Figure 5: Instantaneous tracking efficiency of SPSO.
ATE=91.4

Figure 6: Tracking process of LPSO.

Figure 7: Instantaneous tracking efficiency of LPSO.
ATE=86.9.
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