
Intermodulation Analysis of Nonlinear Circuits Using

Two-Dimensional Fourier Transformation

A.Ushida†, J.Kawata†, Y.Yamagami‡, Y.Nishio‡
†Department of Mechanical and Electronic Engineering,
Tokushima Bunri University, Kagawa, 769-2193 JAPAN

‡Department of Electrical Electronic Engineering,
Tokushima University, Tokushima, 770-8506 JAPAN

Abstract

Distortion analysis of nonlinear circuits is very important
for designing analog integrated circuits and communication
systems. In this paper, we propose an efficient frequency do-
main algorithm for analyzing the intermodulations of mix-
ers and modulators driven by multiple inputs. Firstly, using
ABMs(Analog Behavior Models) of Spice, we have developed
a Fourier transformer executing the two-dimensional Fourier
transformation. Then, the device modules for nonlinear el-
ements such as diodes, bipolar transistors and MOSFETs
are modeled by the Fourier transformer. Applying these
modules, we can formulate the determining equations of the
harmonic balance method in the form of equivalent circuits.
Thus, they can be solved by the DC analysis of Spice, so
that we can easily obtain the characteristics such as the fre-
quency response curves and intermodulation phenomena. In
our algorithm, we need not derive any troublesome circuit
equation and the transformations into the determining equa-
tions, so that our simulators are user-friendly for solving
these circuits.

1. Introduction

The frequency response curves of nonlinear electronic cir-
cuits are very useful for the investigation of the global circuit
behaviors. The Volterra series methods have been widely
used for these purposes[1-5]. The kernel functions are given
in the analytical forms, so that we can easily understand
the circuit behaviors from the functions. Although the al-
gorithms are theoretically elegant, it is not so easy to derive
the higher order Volterra kernels, especially, for the large
scale systems containing many nonlinear elements [1]. Re-
mark that since the ideas are based on the bilinear theorem,
they can be only applied to the weakly nonlinear circuits and
the convergences are not guaranteed for strong nonlinear cir-
cuits. Furthermore, the characteristics of nonlinear devices
in the Volterra series should be approximated by the polyno-
mial forms, which can be done by the Taylor expansions in
the vicinity at each DC operating point of nonlinear devices
[2]. These tasks are not easy to the complicated device mod-
els such as the Gummel-Poon model of bipolar transistors
and the higher level models of MOSFETs, especially, in the
high frequency domain[6,7]. On the other hand, many algo-
rithms have been proposed for calculating the exact steady-
state waveforms in the time-domain [8-10]. Unfortunately,
they are not efficient for analyzing the characteristics such
as frequency response curves.

In this paper, we propose a new Spice-oriented harmonic
balance method for solving the intermodulation phenomena
of the nonlinear circuits. Generally, mixers and modulator
circuits are driven by multiple inputs, so that the steady-
state waveforms behave as quasi-periodic functions. In this
case, the harmonic balance method needs to apply multi-
dimensional Fourier transformation [14] 1 . On the other
hand, ICs consist of many kinds of nonlinear devices such
as diodes, bipolar transistors and MOSFETs, whose device
models are described by special functions and/or piecewise
continuous functions. Then, using ABMs of Spice [12], we
have developed the Fourier transformers which can be ap-
plied to any kinds of models, and constructed the Fourier
transfer modules for these devices, where the relations be-
tween the terminal voltages and currents are described by
functions of the Fourier coefficients. We call the modules
“packaged device modules” . Thus, in our harmonic balance
method, all the nonlinear devices in the circuits are replaced
by the corresponding packaged device modules, and the lin-
ear sub-circuits are transformed into the corresponding Co-
sine and Sine circuits [11] composed of the linear resistive
elements and controlled sources. Remark that the equivalent
circuit obtained in the above corresponds to the determining
equations of the harmonic balance method. We will simply
call the circuit Fourier transfer circuit, which can be solved
by the DC analysis of Spice, and we obtain the characteristic
curves such as frequency response curves.

Thus, once these packaged device modules for all kinds of
nonlinear devices are installed in our computers as library,
the harmonic balance method can be easily applied to any
electronic circuits. In this way, we have realized user-friendly
simulators for calculating the intermodulation analysis.

We show the Fourier transfer circuit in section 2, and a
technique for getting the packaged device modules in section
3. The interesting illustrative examples are shown in section
4.

2. Fourier transfer circuit model

Analog integrated circuits are usually composed of many
kinds of nonlinear devices such as diodes, bipolar transistors
and MOSFETs, whose Spice models are described by the
special functions containing the exponential, square-root,

1If the circuit is driven by N independent frequency compo-
nents, we need to apply an N-dimensional Fourier transformation
that is really time-consuming for large N.
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piecewise continuous functions and so on [7]. For these de-
vices, the Fourier coefficients cannot be described in the an-
alytical forms. Therefore, using ABMs of Spice [12], we
realize the equivalent circuits which execute the Fourier ex-
pansions in the harmonic balance methods. Now, consider
a nonlinear function described by

i = ĝ(v) (1)

Assume the variable v is consisted of the combination tones
of ω1, ω2, and is described by two variables τ1 and τ2;
namely,

v(τ1, τ2) = V0 +

M∑
k=1

{V2k−1 cos(m1kω1τ1 + m2kω2τ2)

+V2k sin(m1kω1τ1 + m2kω2τ2)}, for |m1k| < N, |m2k| < K
(2)

for a given bounded N and K. Let us set

t = τ1 = τ2 (3)

in (2). Then, it is reduced to

v(t) = V0 +

M∑
k=1

{V2k−1 cos(m1kω1 + m2kω2)t

+V2k sin(m1kω1 + m2kω2)t}
(4)

Hence, the Fourier expansion of (1) for the input (4) can be
obtained by the use of the response for the input (2) instead
of (4). The output response i(τ1, τ2) is given by

i(τ1, τ2) = α0(τ1) +

K∑
k=1

{α2k−1(τ1) cos kω2τ2 + α2k(τ1) sin kω2τ2}

(5)
where α0(τ1), α1(τ1), . . . , α2K(τ1) are periodic functions

with the period T1 = 2π/ω1, and K is the high-
est harmonic component of τ2. Here, if we exe-
cute the Fourier transformation of (5) for fixed τ1 at
ω1τ1 ={0, ∆θ1, 2∆θ1, . . . , 2π} for ∆θ1 = π/N , then we can
obtain αk(0),αk(∆θ1),αk(2∆θ1),. . . . , αk(2π). Thus, αk(τ1)
can be also expanded into a Fourier series;

αk(τ1) = αk,0 +

N∑
n=1

{αn,2k−1 cos nω1τ1 + αk,2n sin nω1τ1}

k = 0, 1, 2, . . . , 2K
(6)

Substituting (6) into (5), we obtain

i(τ1, τ2) = α0,0 +

N∑
k=n

{α0,2k−1 cos nω1τ1 + α0,2n sin nω1τ1}

+

K∑
k=1

{α2k−1,0 +

N∑
n=1

[α2k−1,2n−1 cos nω1τ1 + α2k−1,2n sin nω1τ1]}

× cos kω2τ2

+

K∑
k=1

{α2k,0 +

N∑
n=1

[α2k,2n−1 cos nω1τ1 + α2k,2n sin nω1τ1]}

× sin kω2τ2
(7)

Now, setting t = τ1 = τ2 in (7) and applying some trigono-
metric arithmetics, we obtain it in the form of

i(t) = I0 +

M∑
k=1

{I2k−1 cos(m1kω1 + m2kω2)t

+I2k sin(m1kω1 + m2kω2)t}
(8)

Observe that the above two-dimensional Fourier expan-
sion takes at least (2N + 1)-times Fourier expansions for

ω1-component, and (2K + 1)-times expansions for ω2-
component2. Thus, the total number of the Fourier expan-
sions is at least (2N + 1) × (2K + 1).

In our algorithm, we will apply a well-known discrete
Fourier transform for each Fourier expansion as follows;

I0 =
1

2π

∫ 2π

0

ĝ(v)dt

I2k1 =
1

π

∫ 2π

0

ĝ(v) cos kωtdt, I2k =
1

π

∫ 2π

0

ĝ(v) sin kωtdt

k = 1, 2, . . . , N, or K

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(9)

Now, let us apply a trapezoidal integration formula to (9) as
follows;∫ b

a

ĝ(v)dt =
h

2
(ĝ0 + ĝn) + h(ĝ1 + ĝ2 + · · · + ĝn−1) (10)

where the step size of the integration is h = (a − b)/n. Then,
the truncation error is given by ĝ(2)h2/12n, where (2) shows the
second derivative. Replacing the integrations in (9) by (10), we
can realize the equivalent circuit model satisfying the relations
(9). To understand the circuit model, we assume the input

v(θ) = V0 +

M∑
k=1

(V2k−1 cos kθ + V2k sin kθ), θ = ωt (11)

The Fourier transfer circuit model for calculating the Nth higher
harmonic component is shown in Fig.1. Applying integral formula
(10) to (9), we have

I2N−1 =
1

π

∫ 2π

0

ĝ(v) cos Nθdθ =
1

K
(ĝ0 + ĝ2K) +

2

K
(ĝ1 cos Nθ1

+ĝ2 cos Nθ2 + · · · + ĝ2K−1 cos Nθ2K−1)

I2N =
1

π

∫ 2π

0

ĝ(v) sin Nθdθ =
2

K
(ĝ1 sin Nθ1 + ĝ2 sin Nθ2

+ · · · + ĝ2K−1 sin Nθ2K−1)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(12)
The blocks in Fig.1 are constructed by the ABMs of Spice which
calculates the each term of the relation (12), where the interval
[0, 2π] of the integration is divided by 2K equal divisions. In Fig.
1, the value of θk = 2π/2K is obtained by the node voltage at
the kth resistor in the resistive circuit.
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Fig.1 Fourier transfer circuit model.

To investigate the accuracy of our Fourier transfer circuit model,
we calculate the following Fourier expansion:

ex cos θ = I0(x) + I1(x) cos θ + I2(x) cos 2θ + · · · (13)

2The least number comes from the sampling theorem. For
getting exact solution, we need the more number of Fourier ex-
pansions.
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whose Fourier coefficients are given by modified Bessel functions
[13] as follows:

IN (x) =
1

2π

∫ π

−π

ex cos θ cos Nθdθ, N = 0, 1, 2, . . . (14)

The simulation result for h = 2π/20 in Fig.1 is I1(10) = 2761
at N = 1, x = 10 which is exactly equal to the value from the
table of Bessel function [13]. Thus, we found that the Fourier
transfer circuit model can get the sufficiently exact solution even
with 2K = 10 to 20 divisions of the interval 2π.

Next, we consider the two-dimensional Fourier transformation
for the input waveform (4). The algorithm is as follows;

Two-Dimensional Fourier Transformation

Step 1 Set τ1 and τ2 as follows;

ω1τ1 = 0, ∆θ1, 2∆θ1, . . . , (2N − 1)∆θ1, 2π,
for ∆θ1 = π/N

ω2τ2 = 0, ∆θ2, 2∆θ2, . . . , (2K − 1)∆θ2, 2π,
for ∆θ2 = π/K

⎫⎬
⎭ (15)

Step 2 Calculate i(ω1τ1, ω2τ2) at the points {i(n∆θ1, k∆θ2), n =
0, 1, . . . , 2N, k = 0, 1, . . . , 2K}.

Step 3 For fixed ω1τ1 = n∆θ1, n = 0, 1, . . . , 2N , execute the
Fourier transformation for θ2. Thus, we get {αk(n∆θ1), k =
0, 1, 2 . . . , 2K} from the relations (5).

Step 4 Next, for fixed k, αk(τ1) is expanded into the Fourier series
using the values {αk(n∆θ1), n = 0, 1, 2, . . . , 2N} . Thus, we
have the relations (6) and (7).

Step 5 Finally, from some trigonometric arithmetics, we obtain the
two dimensional Fourier expansion (9).

The flowchart for a three terminal element such as bipolar tran-
sistors and MOSFETs is shown in Fig. 2, where the inputs are
given as the Fourier coefficients of 3 terminal voltages, and the
corresponding output current coefficients are obtained from two
terminals.
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Fig.2 Flowchart of the two-dimensional Fourier transformation
for a three terminal element.

3. Fourier transformation of nonlinear
devices

Analog ICs contain many kind of nonlinear devices such as diodes,
bipolar transistors and MOSFETs. In this section, we show
a technique to construct the packaged device modules with the
Fourier transfer circuit given in section 2.These customizations
are very useful to develop user-friendly simulators in our har-
monic balance method. Now, we consider npn bipolar transistor
as shown in Fig. 3. The DC currents with Gummel-Poon model
is given as follows[6-7];

iC =
IS

QB

(
exp

(
vBE

Vt

)
− 1

)

−IS

(
1

QB
+

1

BR

)(
exp

(
vBC

Vt

)
− 1

)
(16.1)

iB =
IS

BF

(
exp

(
vBE

Vt

)
− 1

)
+

IS

BR

(
exp

(
vBC

Vt

)
− 1

)
(16.2)

where
1

QB
� 1 − vBC

VAF
− vBE

VAF

On the other hand, the charge qBE and qBC are given by

qi =

(
Cj0An

[1 − (vi/φB)]m
+

τISAn

nVt
exp

(
vi

nVt

))
vi, for (vi < FcφB)

(17.1)

qi =

(
Cj0An

[1 − Fc](1+m)

(
1 − Fc(1 + m) +

mvi

φB

)

+
τISAn

nVt
exp

(
vi

nVt

)
)

)
vi, for (vi ≥ FcφB) (17.2)

i = BC, BE

Now, we assume the input voltage waveforms at the collector,
base and emitter vC , vB , vE as follows;

vi(t) = Vi,0 +

M∑
k=1

{Vi,2k−1 cos(m1kω1 + m2kω2)t

+Vi,2k sin(m1kω1 + m2kω2)t}, i = C, B, E,

(18)

Firstly, using two-dimensional Fourier expansion given in section
2, we execute the Fourier expansion to the base and corrector
currents {i′B(t), i′C(t)} given by (16), and the base-collector and
base-emitter charges {qBC(t), qBE(t)} given by (17). After then,
we use the following relations;

iB(t) = i′B(t) +
dqBE(t)

dt
+

dqBC(t)

dt

iC(t) = i′C(t) − dqBC(t)

dt

⎫⎬
⎭ (19)

Thus, we have the two-dimensional Fourier expansions of the
base and collector currents as follows;

ii(t) = Ii,0 +

M∑
k=1

{Ii,2k−1 cos(m1kω1 + m2kω2)t

+Ii,2k sin(m1kω1 + m2kω2)t}, i = C, B

(20)
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Fig.3 Nonlinear electronic
circuit.
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Fig.4 Nonlinear electronic
circuit.

where
IB,0 = I′B,0,

IB,2k−1 = I′B,2k−1 + (m1kω1 + m2kω2)(QBE,2k−1 + QBC,2k−1)

IB,2k = I′B,2k − (m1kω1 + m2kω2)(QBE,2k + QBC,2k) (21.1)

IC,0 = I′C,0,

IC,2k−1 = I′C,2k−1 − (m1kω1 + m2kω2)QBC,2k−1

IC,2k = I′C,2k + (m1kω1 + m2kω2)QBC,2k (21.2)
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Fig.5 Intermodulation circuit of Fig. 4 at m1kω1 + m2kω2.
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Remark that “I′s” in (21) show the currents evaluated from
(16) and ”Qs” from (17) using two-dimensional Fourier transfor-
mation.

In the same way, we can calculate the above input-output two-
dimensional Fourier transformations to all the nonlinear devices
such diodes and MOSFETs. We also transform all the reac-
tance elements into the linear equivalent Cosine and Sine ele-
ments [11]. Thus, the circuit Fig.4 is transformed the equivalent
Cosine-Sine circuit as shown in Fig.5 at each frequency compo-
nent m1kω1+m2kω2. It corresponds to the determining equations
of the harmonic balance method . Thus, we can solve the circuit
with DC analysis of Spice, efficiently.

4. An illustrative example

Let us calculate the frequency response curves of a mixer cir-
cuit [13] shown in Fig. 6 which has two independent frequencies
ω1 = 0.18[MHz] and ω2 = 0.2[MHz] . Although the circuit may
happen to arise many frequency components, we consider DC, ω1

ω2, 2ω1, 2ω2, ω1 ± ω2 components. We also set N = K = 3 in
(2). The transistor is modeled by a Gummel-Poon model, whose
parameters are given by [6]

IS = 10−14[A] τ = 10−10[sec] Vt = 0.026[V ] φB = 0.75
BF = 470 Cj0 = 0.1[pF ] VAF = 150[V ] Fc = 0.74
BR = 1

V
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1 2

3 4
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1 2
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Fig.6 A differential mixer.
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Fig.7 Transient response
of the differential mixer.

V1 = V2 = 10[V ], V3 = −10[V ], V4 = 5[V ], L = 10[µH],
C = 1[pF ] R1 = 100[Ω], R2 = 10[Ω]

v1(t) = 0.01 cos 0.18 × 106t, v2(t) = 0.2 cos 0.2 × 106t

2 2.5 3 3.5 4

3

2

1

0

x

1ω

ω2

=0.02x10  [MHz]ω2

=0.018x10  [MHz]1ωMixing ratio x

x

Fig.8 Frequency response curves and mixing ratio of the
differential mixer.

In the numerical computation in Fig.7, we set two frequencies as
follows;

ω1 = 0.018 × 106 × 10x, ω2 = 0.02 × 106 × 10x

Thus, we have ω1 = 0.18[MHz] and ω2 = 0.2[MGz] at x = 1.
Note that we take 137 [sec] to get the netlist and 463[sec] for the
computation with Spice. The mixing ratio is defined by

M = A1/A2

for the two output amplitudes A1 and A2.

5. Conclusions and remarks
The distortion analysis is very important for designing the high

frequency communication systems.
In this paper, we have proposed an efficient technique for cal-

culating the frequency response curves and mixing ratio of non-
linear electronic circuits. At first, the nonlinear devices such as
bipolar transistors and MOSFETs are transformed into the cor-
responding modules which carry out the two-dimensional Fourier
transformations. Using these device modules, the nonlinear cir-
cuit is transformed into the Fourier circuit corresponding to the
determining equations of the harmonic balance method, and they
are solved with the DC analysis of Spice.

We have found that it will take a lot of computational time for
large scale circuits containing many transistors when we apply
two-dimensional Fourier transformation to them. Therefore, we
need to improve the algorithm in future.
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