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Abstract—
This paper proposes a Hopfield-type spiking neural net-

work with modulation of resting membrane potential, and
reports retrieval data transition phenomena in its associa-
tive memory operation. Spiking neuron models express
analog information by the timing of neuronal spike firing
events. Since these models operate asynchronously, it is
expected that the spiking network operates faster than the
conventional synchronous models. We have designed a
CMOS spiking neural network circuit. It has been found
in the circuit simulation that because of the resting mem-
brane potential modulation with a sinusoidal curve, a re-
trieval pattern is unstabilized and the network retrieves an-
other memorized pattern.

1. Introduction

A biological neuron receives many electric spike im-
pulses via synapses, and it fires by generating a spike im-
pulse. However, the conventional neural network models
usually use analog output values based on the neuronal fir-
ing rate coding or the firing population coding. Recently,
the spiking neuron models, which express analog informa-
tion by the timing of neuronal spike firing, attract a lot of
attention with expectation of their higher information pro-
cessing ability [1, 2].

From the theoretical neural network model research, it is
expected that more advanced neural system can be devel-
oped using the spiking neuron models. Additionally, since
these models operate asynchronously, it is also expected
that spiking neural networks operate faster than the con-
ventional synchronous models. So far, the spiking neuron
models have mainly been applied to feedforward networks;
for example, image data processing using a spiking feedfor-
ward network was reported [3]．

However, there have been only a few reports about spik-
ing feedback networks. In order to achieve spiking feed-
back networks with continuous states, spike outputs ex-
pressing the zero value are required. However, a neu-
ron generates no spike unless its internal potential exceeds
the threshold, and usually the resting (membrame) poten-
tial corresponding to the zero value is below the threshold.
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Figure 1: Spiking Neuron Model.

Therefore, a simple information representation scheme by
spike timing cannot be applied to such feedback networks.

One of the autors has introduced negative thresholding
to solve this problem, and this thresholding operation is
achieved by introducing a global excitatory unit [4]. It has
also reported that feedback (Hopfield-type) spiking neural
networks have a retrieval property for associative memory
as conventional Hopfield networks with analog internal po-
tential.

On the basis of the previous work [4], this paper reports
transition phenomema of retrieval data in associative mem-
ory constructed by a newly proposed Hopfield-type spik-
ing neural network with modulation of resting membrane
potential. In the model proposed in this paper, resting
potential modulation is used as the negative thresholding
scheme, and furthermore, the modulation leads to retirieval
data transition.

2. Spiking Neural Network Model

The integrate-and-fire-type (IF) neuron model is shown
in Fig. 1, which is a typical spiking neuron model. When
a spike pulse is fed into a neuron via a synapse, a post-
synaptic potential (PSP) is generated. A neuronal internal
potential is determined by the spatiotemporal summation of
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Figure 2: Timing chart of our spiking neuron model.

PSPs generated by the input spikes. There are two types of
synapses: excitatory and inhibitory, according to the sign
of the synaptic weight wni.

In the simple IF model, the time courses of PSPs are
the same, which we call here a unit PSP, P (t), as a con-
volutional kernel, and the PSP from neuron i to neuron n,
PSPni(t), is given by the sum of unit PSPs multiplied by
the corresponding synaptic weights:

PSPni(t) =
∑

t
(f)
i

∈Fi

wniP (t − t
(f)
i ), (1)

where Fi = {t(1)i , · · · , t
(n)
i } is the set of firing times of

neuron i. The internal potential of neuron n, Vn(t), is given
by the sum of PSPni(t):

Vn(t) =
∑

i∈Γn

PSPni(t), (2)

where Γn is the set of input to neuron n. The effect of PSP
is temporary, and the internal potential returns to the resting
potential level after the PSP ceases.

The timing chart of our spiking neuron model is shown
in Fig. 2. An input spike (ij) generates PSP (psp control).
When the internal potential (Vn) exceeds the threshold, a
neuron fires and generates a spike (spike control). After fir-
ing, the internal potential is reset for a so-called absolute
refractory period (reset control), and then a relative refrac-
tory period follows, when the threshold level is increased
(th control). A Spike generated at a neuron is transmitted
to other neurons or the neuron itself with transmission de-
lay time (in).

In our model, the resting potential level is modulated
with a sinusoidal curve. The period of the sinusoidal mod-
ulation is much longer than the inter-spike interval. When
the resting potential is nearly maximum, all neuron can fire.

Figure 3: Hopfield network configuration.

Therefore, the relative spike-timing difference can repre-
sent the analog information.

3. Simulation of Associative Memory Using Spiking
Neural Network

3.1. Simulation Condition

We have designed a spiking feedback network LSI cir-
cuit using a 0.35 µm CMOS technology. A synapse part
was replaced by a constant current source. An input spike
pulse turns on a current switch and charges or discharges a
capacitor, whose terminal voltage represents the neuronal
internal potential, according to the sign of the synaptic
weight. The spatiotemporal summation of PSPs by input
spikes is performed by this capacitor. In order to compare
a neuronal internal potential to the threshold voltage, we
used a comparator using a differential pair. In order to
make a neuron generate a refractory period, we made the
threshold voltage increase after neuronal firing. In order to
realize the transmission delay, spike pulses are delayed by
using an inverter chain.

We evaluated the performance of our model by circuit
simulation of the designed CMOS circuit. The simulations
were performed by a high-speed circuit simulator, HSIM,
produced by Nassda Corporation. The reason why we used
circuit simulation instead of usual software simulation is
that it directly leads to the VLSI implementation of our
model.

Using the above spiking neuron model, we constructed
a Hopfield-type neural network composed of 36 neurons
with symmetric connections as shown in Fig. 3. The synap-
tic weights wij , which are expressed by the sum of autocor-
relation matrixes, are given by the following equation:

wij =
N∑

k=1

(2Ik
i − 1)(2Ik

j − 1), for i �= j, (3)

where wii = 0, and Ik
i is the i-th element of the k-th stored

pattern vector. In the simulation, the number of stored
patterns N was five, and the stored patterns are shown in
Fig. 4. The elements Ik

i were randomly chosen under the
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Figure 4: Stored patterns used in the simulations.

condition that the numbers of ‘0’ and ‘1’ are equal. As a
result, wij ∈ {±5,±3,±1}. We used gray-level (5-levels)
input patterns that converge to stored pattern #1 shown in
Fig. 4.

In the simulation, the time step corresponding to one
level in gray-level patterns was set at 25 ns. Therefore, the
firing timing of input spikes was limited in {0, 25, 50, 75,
100} ns, and the time span for receiving input spikes was
100 ns.

3.2. Simulation Results

A simulation result about our spiking neural network is
shown in Fig. 5, which shows the outputs of twelve neu-
rons corresponding to pixels 1 to 12 in the first and second
rows of the pattern shown in Fig. 4. Figure 5(a) also shows
the sinusoidal modulation ε sin(ωt) of the resting potential.
The parameters of the modulation is as follows: ε = 0.06 V,
ω = 2π × 1.67 × 105 rad/s. Here, modulation phase θ is
defined as θ = ωt mod 2π. As can be seen in Fig. 5(a),
most neurons generate approximately periodical spikes be-
cause of feedback with transmission delay. However, some
neurons generate no spikes when θ = [3π/2, π/2]. For a
single neuron, it is easy to fire at the highest resting poten-
tial (θ = π/2), and it is most difficult to fire at the lowest
resting potential (θ = 3π/2). However, due to collective
behavior of the network, the period when neurons are diffi-
cult to fire shifts slightly.

Figure 5(b) shows a magnified view of the a spatio-
temporal spike pattern at the initial period. In this case, the
spike pattern converged to stored pattern #1 because we in-
putted a pattern similar to pattern #1. However, after some
modulation periods, the network converged to a different
stored pattern as shown in Fig. 5(c); it was pattern #5 in
this case.

Figure 6 shows spike outputs of some neurons and their
corresponding internal potentials when the spike pattern
becomes unstable. The internal potentials reach the thresh-
old at timing α and β, and after the predefined transmis-
sion delay, the neurons output spikes at timing α′ and β′,
respectively.

The spatio-temporal spike pattern transition in Fig. 5(a)
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Figure 6: Simulation result.

can be understood as follows. For the first period (t =
[0, 3] µs) (Fig. 5(b)), the network converges to pattern #1,
where a rising resting potential works as negative thresh-
olding as proposed in the previous work. For the second
and third modulation period (t = [3, 17] µs), some neurons
cannot fire because of a low resting potential and a small
value of PSP summation. This unfiring in some neurons
leads to a different stored-pattern basin from the first sta-
bilized state (pattern #1). Then, for the fourth modulation
period (t = [17, 20] µs) (Fig. 5(c)), the network reaches a
different pattern (#5) state.

4. Conclusions

We proposed a Hopfield-type spiking neural network
with modulation of resting membrane potential, and ob-
served retrieval data transition in its associative memory
operation. The transition is caused by some unfiring neu-
rons for a low resting potential period. On the other
hand, for a high resting potential period, all neurons gener-
ate spikes, and therefore data representation using relative
spike-firing timing is achieved. It is a future work to design
the network and to determine the synaptic weight values
for obtaining desirable data transition.
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