
Hetero Chaotic Associative Memory for Successive Learning
with Give Up Function

Makoto IDEGUCHI, Nobuo SATO and Yuko OSANA

School of Computer Science,

Tokyo University of Technology

1404-1 Katakura-cho, Hachioji, Tokyo, 192-0982, Japan

Email: osana@cc.teu.ac.jp

Abstract—In this paper, we propose a Hetero Chaotic

Associative Memory for Successive Learning (HCAMSL)

with give up function. The proposed model is based on

a Chaotic Associative Memory for Successive Memory

(CAMSL). In the proposed HCAMSL, the learning process

and the recall process are not divided. When an unstored

pattern is given to the network, the HCAMSL can learn the

pattern successively.

1. Introduction

Recently, neural networks are drawing much attention as

a method to realize flexible information processing. Neural

networks consider neuron groups of the brain in the crea-

ture, and imitate these neurons technologically. Neural net-

works have some features, especially one of the important

features is that the networks can learn to acquire the ability

of information processing.

In the filed of neural network, many models have been

proposed such as the Back Propagation (BP) algorithm,

the Self-Organizing Map (SOM), the Hopfield network,

and the Bidirectional Associative Memory (BAM). In these

models, the learning process and the recall process are di-

vided, and therefore they need all information to learn in

advance.

However, in the real world, it is very difficult to get all

information to learn in advance. So we need the model

which the learning process and the recall process are not

divided. As such model, Grossberg and Carpenter pro-

posed ART (Adaptive Resonance Theory) [1]. However,

the ART is based on the local representation, and therefore

it is not robust for damage. While in the field of associative

memories, some models have been proposed[2]–[4]. Since

these models are based on the distributed representation,

they have the robustness for damaged neurons. However,

they can deal with only auto-associations.

In this paper, we propose a Hetero Chaotic Associative

Memory for Successive Learning (HCAMSL) with give

up function. The proposed model is based on a Chaotic

Associative Memory for Successive Memory (CAMSL)[4]

and can deal with hetero-associations. In the proposed

HCAMSL, the learning process and the recall process are

not divided. When an unstored pattern is given to the net-

work, the HCAMSL can learn the pattern successively.

2. Hetero Chaotic Associative Memory for Successive
Learning

2.1. Outline of HCAMSL

Here, we explain the outline of the proposed Het-

ero Chaotic Associative Memory for Successive Learning

(HCAMSL). The proposed HCAMSL has three stages: (1)

Pattern Search Stage, (2) Learning Stage and (3) Free As-

sociation Stage.

When an unstored pattern set is given to the network, the

proposed HCAMSL distinguishes an unstored pattern set

from stored patterns and can learn the pattern set succes-

sively. When a stored pattern set is given, the HCAMSL

recalls the patterns. When an unstored pattern set is given

to the network, the HCAMSL changes the internal pattern

for the input pattern set by chaos and presents other pattern

candidates (we call this the Pattern Search Stage). When

the HCAMSL can not recall the desired patterns, it learns

the input pattern set as an unstored pattern set (Learning

Stage). After the learning, or when an input pattern set is

not given, the HCAMSL has free association (Free Associ-

ation Stage).

2.2. Structure of HCAMSL

The proposed HCAMSL is a kind of the hetero-

associative memories. Figure 1 shows a structure of the

HCAMSL. This model has two layers; an Input-Output

Layer (I/O Layer) composed of conventional neurons and

a Distributed Representation Layer (DR Layer) composed

of chaotic neurons[5]. In this model, there are the connec-

tion weights between neurons in the Distributed Represen-

tation Layer and the connection weights between the Input-

Output Layer and the Distributed Representation Layer. As

shown in Fig.1, the Input-Output Layer has plural parts.

The number of parts is decided depending on the number

of patterns included in the pattern set. In the case of Fig.1,

the Input-Output Layer consists of two parts corresponding

to the pattern 1 and the pattern 2.

In this model, when a pattern set is given to the Input-

Output Layer, the internal pattern corresponding to the in-

put patterns is formed in the Distributed Representation

Layer. Then, in the Input-Output Layer, an output pattern

2005 International Symposium on Nonlinear
Theory and its Applications (NOLTA2005)

Bruges, Belgium, October 18-21, 2005

42

 1

2 3

Pattern 1 Pattern 2

4

DR Layer

I/O Layer

Figure 1: Structure of proposed HCAMSL.

set is generated from the internal pattern. The HCAMSL

distinguishes an unstored pattern set from stored patterns

by comparing the input patterns with the output patterns.

In this model, the output of the ith neuron in the Dis-

tributed Representation Layer at time t + 1, xD
i (t + 1) is

given by the following equations.

xD
i (t + 1) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
φD(ξi(t + 1)),

when a new pattern set is given

φD(ξi(t + 1) + ηi(t + 1) + ζi(t + 1)),

(1)

otherwise

ξi(t + 1) = ksξi(t) +
M∑
j=1

vi jA j(t) (2)

ηi(t + 1) = kmηi(t) +
N∑

j=1

wi jxD
j (t) (3)

ζi(t + 1) = krζi(t) − α(t)xD
i (t) − θi(1 − kr) (4)

In Eqs.(1)–(4), M is the number of neurons in the Input-

Output Layer, vi j is the connection weight between the jth
neuron in the Input-Output Layer and the ith neuron in the

Distributed Representation Layer, N is the number of neu-

rons in the Distributed Representation Layer, Aj(t) is the

jth external input to the Input-Output Layer at time t, wi j is

the connection weight between the ith neuron and the jth
neuron in the Distributed Representation Layer, α(t) is the

scaling factor of the refractoriness at time t, ks, km, kr are

the damping factors. φD(·) is the following output function:

φD(ui) = tanh(ui/ε) (5)

where ε is the steepness parameter.

The output of the jth neuron in the Input-Output Layer

at time t, xIO
j (t) is given as follows.

xIO
j (t) = φIO

⎛⎜⎜⎜⎜⎜⎝
N∑

i=1

vi jxD
i (t)

⎞⎟⎟⎟⎟⎟⎠ (6)

φIO =

{
1 , u ≥ 0

−1 , u < 0
(7)

2.3. Pattern Search Stage

In the Pattern Search Stage, when an input pattern set

is given, the HCAMSL distinguishes the pattern set from

stored patterns. When an unstored pattern set is given, the

HCAMSL changes the internal pattern for the input pattern

by chaos and presents the other pattern candidates. Un-

til the HCAMSL recalls the desired patterns, the following

procedures are repeated. If the HCAMSL can not recall the

desired patterns, when the stage is repeated certain times,

the HCAMSL finishes the stage.

2.3.1. Pattern Assumption

In the proposed HCAMSL, only when the input patterns

are given to all parts of the Input-Output Layer, the patterns

are judged. When the input pattern A(t) is similar to the

recalled pattern xIO(t), the HCAMSL can assume that the

input pattern is one of the stored patterns. The HCAMSL

outputs the pattern formed by the internal pattern in the

Distributed Representation Layer. The similarity s(t) is de-

fined by :

s(t) =
1

M

M∑
j=1

g(Aj(t), xIO
j (t)) (8)

g(a, b) =

{
1 , a = b
0 , a � b. (9)

The HCAMSL regards the input patterns as a stored pattern

set, when the similarity rate s(t) is larger than the threshold

sth (s(t) ≥ sth).

2.3.2. Pattern Search

When the HCAMSL assumes that the input patterns is

an unstored pattern set, the HCAMSL changes the internal

pattern xD(t) for the input patterns by chaos and presents

the other pattern candidates.

In the chaotic neural network, it is known that dynamic

(chaotic) association can be realized if the scaling factor of

the refractoriness α(t) is suitable[5, 6]. Therefore, in the

proposed model, α(t) is changed as follows:

α(t) = ((αmax(t) − αmin)(1 − s(T)) + αmin)/αDIV (10)

αmax(t) = Mvmax + Nwmax (11)

wmax = max{|w11|, · · · , |wii′ |, · · · , |wNN |} (12)

vmax = max{|v11|, · · · , |vi j|, · · · , |vNM |} (13)

where αmin is the minimum of α, αmax(t) is the maximum of

α at time t, s(T) is the similarity between the input pattern

and the output pattern at time T (the time when the Pattern

Search Stage was started), αDIV is constant.

43

2.4. Learning Stage

In the Pattern Search Stage, if the HCAMSL can not re-

call the desired pattern set, it learns the input pattern set

as an unstored pattern set. The Learning Stage has two

phases: (1) Hebbian Learning Phase and (2) anti-Hebbian

Learning Phase. In the Hebbian Learning Phase, if the

signs of the outputs of two neurons are the same, the

connection weight between these two neurons is strength-

ened. By this learning, the connection weights are changed

to learn the input patterns, however the Hebbian learning

can only learn a new input pattern set. In the proposed

HCAMSL, the anti-Hebbian Learning Phase is employed

as similar as the original CAMSL[4]. In the anti-Hebbian

Learning Phase, the connection weights are changed in

the opposite direction in the case of the Hebbian Learning

Phase. The HCAMSL can learn a new pattern set without

destroying the stored patterns by the anti-Hebbian Learn-

ing.

2.4.1. Hebbian Learning Phase

In the Hebbian Learning Phase, until the similarity rate

s(t) becomes 1.0, the following procedures ((a) and (b)) are

repeated.

(a) Update of Connection Weights

The connection weight between the Input-Output Layer

and the Distributed Representation Layer vi j and the con-

nection weight in the Distributed Representation Layer wii′

are updated as follows :

v(new)
i j = v(old)

i j + γ+v xD
i (t)Aj(t) (14)

w(new)
ii′ = w(old)

ii′ + γ
+
wxD

i (t)xD
i′ (t) (15)

where γ+v is the learning rate of the connection weight vi j

in the Hebbian Learning Phase, and γ+w is the learning rate

of the connection wright wii′ in this phase.

(b) Normalization of Connection Weights

When the number of the learnings in this phase becomes

more than the threshold nth and the similarity rate s(t) is not

equal to 1.0, the connection weights are normalized.

v(new)
i j =

v(old)
i j

vmax
(16)

w(new)
ii′ =

w(old)
ii′

wmax
(17)

where vmax is the maximum absolute value of the connec-

tion weights vi j, and wmax is the maximum absolute value

of the connection weight wii′ .

(c) Give Up Function

When the similarity rate s(t) does not become 1.0 even if

connection weights are normalized rth times, the HCAMSL

gives up to study the patterns. If the HCAMSL gives up to

study the patterns, the anti-Hebbian Learning Phase is not

performed.

2.4.2. Anti-Hebbian Learning Phase

The anti-Hebbian Learning Phase is performed after the

Hebbian Learning Phase. In this phase, the connection

weights vi j and wii′ are changed in the opposite direction

in the case of the Hebbian Learning Phase. The anti-

Hebbian Learning makes the relation between the patterns

are learned without destroying the stored patterns.

In this phase, vi j and wii′ are updated by

v(new)
i j = v(old)

i j − γ−v xD
i (t)Aj(t) (18)

w(new)
ii′ = w(old)

ii′ − γ−wxD
i (t)xD

i′ (t) (19)

where γ−v (γ−v > γ+v > 0) is the learning rate of the con-

nection weight vi j in the anti-Hebbian Learning Phase, and

γ−w(γ−w > γ+w > 0) is the learning rate of the connection

weight wii′ in this phase.

2.5. Free Association Stage

After the Learning Stage, or when a pattern set is not

given to the network, the HCAMSL associates freely. In

this stage, distinction between unstored and stored patterns

is not carried.

3. Computer Experiment Result

In this section, we show the computer experiment results

to demonstrate the effectiveness of the proposed HCAMSL.

3.1. Action Study of Robot using HCAMSL

In this section, we applied the proposed HCAMSL to the

action study of a robot. Here, we made the robot (Fig.2)

by using LEGO Mindstorms and the relation between the

instruction and the action were trained by the proposed

HCAMSL (Fig.3).

In this experiment, the input such as the instruction

and the evaluation for robot’s action are given by voice,

and they are recognized by the speech recognition pro-

gram. The recognized instruction information is sent to

the HCAMSL, and the HCAMSL output the action of

the robot. The robot acts according to the output of the

HCAMSL. The relation between the instruction and the ac-

tion is learned based on the evaluation which is given to the

robot’s action.

We carried out some trials and confirmed that the pro-

posed model can memorize the relation between the in-

struction and the action.

3.2. Storage Capacity

Here, we examined the storage capacity of the proposed

HCAMSL. In this experiment, we used the HCAMSL

which has 100 neurons (50 neurons for pattern 1 and 50

neurons for pattern 2) in the Input-Output Layer and the

44

Figure 2: Mindstorms Robot.

Figure 3: An Example of Stored Pattern.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25
The Number of Stored Patterns

S
to

ra
ge

 C
ap

ac
ity

conventional BAM

HCAMSL (DR-Layer : 50)

HCAMSL (DR-Layer : 100)

HCAMSL (DR-Layer : 150)

HCAMSL (DR-Layer : 200)

Figure 4: Storage Capacity (I/O Layer : 100).

HCAMSL which has 200 neurons (100 neurons for pattern

1 and 100 neurons for pattern 2) in the Input-Output Layer.

We used random patterns to store and Figs.4 and 5 show

the average of 100 trials. In these figures, the horizontal

axis is the number of stored pattern set, and the vertical

axis is the perfect recall rate. As shown in Figs.4 and 5, the

storage capacity of the proposed HCAMSL is higher than

that of the Bidirectional Associative Memory (BAM)[7].

Moreover, although the conventional BAM can not memo-

rize any pattern when the number of patterns to be stored

is large, the proposed HCAMSL can memorize some pat-

terns.

Figure 6 shows the storage capacity of the proposed

HCAMSL and the model without give up function. This

figure shows that the effectiveness of the give up function

in the proposed HCAMSL.

4. Conclusions

In this paper, we have proposed the Hetero Chaotic

Associative Memory for Successive Learning (HCAMSL)

with give up function and applied it to action study of a

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

The Number of Stored Patterns

S
to

ra
ge

 C
ap

ac
ity

conventional BAM

HCAMSL (DR-Layer : 100)

HCAMSL (DR-Layer : 150)

HCAMSL (DR-Layer : 200)

HCAMSL (DR-Layer : 300)

Figure 5: Storage Capacity (I/O Layer : 200).

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

The Number of Stored Patterns

S
to

ra
ge

 C
ap

ac
ity

conventional BAM

HCAMSL (DR-Layer : 50)

HCAMSL (DR-Layer : 100)

HCAMSL without Give Up Function (DR-Layer : 50)

HCAMSL without Give Up Function (DR-Layer : 100)

Figure 6: Effectiveness of Give Up Function.

robot. The proposed model is based on a Chaotic Associa-

tive Memory for Successive Memory (CAMSL). In the pro-

posed HCAMSL, the learning process and the recall pro-

cess are not divided. When an unstored pattern is given

to the network, the HCAMSL can learn the pattern succes-

sively. We carried out a series of experiment and confirmed

that the proposed HCAMSL can memorize pattern sets suc-

cessively.

References

[1] G. A. Carpenter, S. Grossberg, Pattern Recognition by Self-

organizing Neural Networks, The MIT Press, 1995.

[2] M. Watanabe, K. Aihara, S. Kondo, “Automatic learning

in chaotic neural network s,” IEICE-A, Vol.J78-A, No.6,

pp.686–691, 1995 (in Japanese).

[3] Y. Osana and M. Hagiwara, “Successive learning in chaotic

neural network,” International Journal of Neural Systems,

Vol.9, No.4, pp.285–299, 1999.

[4] N. Kawasaki, Y. Osana and M. Hagiwara, “Chaotic associa-

tive memory for successi ve learning using internal patterns,”

IEEE International Conference on Systems, Man and Cyber-

netics, 2000.

[5] K. Aihara, T. Takabe and M. Toyoda, “Chaotic neural net-

works,” Physics Letters A, 144, No. 6,7, pp. 333–340, 1990.

[6] Y. Osana and M. Hagiwara, “Separation of superimposed pat-

tern an d many-to-many associations by chaotic neural net-

works,” IJCNN, Anchorage, 1, pp. 514–519, 1998.

[7] B. Kosko, “Bidirectional associative memories,” IEEE Trans.

Syst. Man. Cybrn., SMC-18, No. 1, pp. 49–60, 1988.

45

