
A Complex-Valued Reinforcement Learning Algorithm Using Complex-Valued
Neural Networks

Masaki Mochida†, Hidehiro Nakano† and Arata Miyauchi†

†Faculty of Knowledge Engineering, Tokyo City University
1–28–1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan

Email: g1781530@tcu.ac.jp, hnakano@tcu.ac.jp, miyauchi@ic.cs.tcu.ac.jp

Abstract—In Complex-valued Reinforcement Learning
(CRL), each action-value is represented by a complex
value. Then, search history can be naturally included in the
argument, while dominance relationships are decided by
the amplitude. CRL is effective for the environments with
perceptual aliasing. In order to apply larger-problems with
the large number of states, this paper introduces the func-
tion approximation for the action-value function by using
complex-valued neural networks. The simulation results
for a benchmark problem are shown.

1. Introduction

For autonomous machines, it is necessary to generate be-
havior rules. However, it is difficult for designers compre-
hensively to describe them because there is uncertainty in
the real world. Therefore, there is Reinforcement Learning
(RL) as a method to let the machines learn behavior rules
autonomously.

RL is a method to learn behavior rules by trial and error
with the environment as a learning object [1]. In RL, an
agent that is a learner observes its own state from the en-
vironment and selects an action based on that state. Then,
the agent evaluates the action based on the rewards thus ob-
tained, and learns better behavior rules. For RL, there are
some conditions to be considered when applying to real
problems. One of them is perceptual aliasing.

Perceptual aliasing occurs when sensors with enough
ability are not available. This makes it difficult for the
agent to identify the state, causing a problem in selecting
the action. To solve this problem, we can improve the dis-
crimination ability of the current state by memorizing past
observations and actions. However, this requires sufficient
memory size and computational resources. As a method
for avoiding this problem, there is Complex-valued Rein-
forcement Learning (CRL)[2].

In CRL, action values are represented by complex val-
ues. Then, information on the path length of the propagated
reward is incorporated in the action values. By using this
information, the ability to distinguish each state can be im-
proved. In addition, CRL doesn’t require so much memory
size and computation resources.

In RL, there are cases where continuous values are han-
dled in expression of states. It requires fine discretization

for them, but action value space becomes large-scale. This
leads to an increase in required memory size and a decrease
in learning speed. This problem can be dealt with by ex-
pressing the action value space by a function approximator.
There is a conventional method in which the action value
function of CRL is represented by a complex-valued Radial
Basis Function (RBF) networks[3].

In this paper, we apply a complex-valued neural
networks[4] as a function approximator of the action value
function in CRL. A complex-valued neural network is a
neural network in which network parameters and variables
are complex values. In the conventional method, plural net-
works were prepared corresponding to the number of ac-
tions, whereas in the proposed method, actions are taken as
inputs to the network. This can share the network between
actions and prevent an increase in the network size due to
an increase in the number of actions. Simulation results are
shown in the Mountain Car task [6] where the state space
is continuous.

2. Complex-valued Reinforcement Learning using
Complex-valued Neural Networks

2.1. Q̇-learning

Q̇-learning[2] is a kind of CRL algorihtms. The up-
date equations of complex-valued action valueQ̇(xt,at) are
shown below.

Q̇(xt, at) ← (1− α)Q̇(xt,at)

+ α
[
rt+1 + γQ̇(xt+1,a

′
t+1)
]
eiω (1)

a′t+1 = argmax
a∈A(xt+1)

Re
(
Q̇(xt+1,a)¯̇I t

)
(2)

wherex is an observed state,a is an action,A is a set of
actions,r is the reward obtained by the action andt is time-
step. α, γ, ω are parameters, which is the learning rate,
the discount rate of the propagated reward, and the rota-
tional amount of phase, respectively.̇Q(xt,at) expresses
the cumulative reward value by the absolute value and ex-
presses the path length of the propagated reward by the
phase on the complex plane. According to Eq.(1), by per-
forming phase rotation on the propagated reward when up-
dating, continuity is given to the neighboring states, and the
path length of the propagation reward is added to the action

- 564 -

2017 International Symposium on Nonlinear Theory and Its Applications,

NOLTA2017, Cancun, Mexico, December 4-7, 2017



value.Q̇-learning uses the internal reference valueİt which
represents the context of the agent for action selection. The
internal reference value is the following expression.

İt =


Q̇(xt,at)e−iω f or t ≥ 0

Q̇

x0,argmax
a∈A(x0)

∣∣∣Q̇(x0,a)
∣∣∣ f or t = −1 (3)

The internal reference value holds the previous action value
as the context of the agent, and the agent refers to the inter-
nal reference value so that it is possible to select the action
along the propagation path of the reward from the conti-
nuity of the phase. Then,̇Q-learning make it possible to
distinguish states which are equated by perceptual aliasing.
Such action selection is performed using the inner prod-
uct of complex-valued action value and internal reference
value as follows.

Re
(
Q̇(xt,a)¯̇I t−1

)
(4)

By using this, it is easier to select an action whose abso-
lute value is large and whose phase is closer to the internal
reference value. Namely, an action with higher cumulative
reward value and continuity with internal reference value is
more likely to be selected.

2.2. Q̇-learning using Complex-valued Neural Net-
works

A complex-valued neural network[4] is a neural network
in which network parameters and variables are complex
values. Complex-valued neural networks can express any
complex-valued input-output relationships by changing pa-
rameter values. This makes it possible to handle a complex-
valued neural network as a complex number function ap-
proximator. In addition, complex-valued neural networks
are said to be able to represent complex values well be-
cause of the feature that parameters and variables are com-
plex values.

The complex-valued action value function approximated
by a complex-valued neural network is shown below.

Q̇(x, a) =

H∑
k=1

ẇo
kξ̇k + ḃo (5)

ξ̇k = f

 N∑
j=1

ẇh
k jẊ j + ḃh

k

 k ∈ {1 . . .H} (6)

Ẋ = (x1, . . . , xn,a1, . . . ,am) (7)

f (u̇) = tanh(Re(˙u)) + i tanh(Im(u̇)) (8)

whereẇh
k j and ḃh

k are the parameters of the hidden layer,

andẇo
k andḃo are those of the output layer.N is the num-

ber of input layer neurons. Assuming that the number of
dimensions of states isn and the number of dimensions of
actions ism, N = n + m. H is the number of hidden layer
neurons. In the conventional method using the complex-
valued RBF network[3], only the state is input and different

Figure 1: Complex-valued RBF network for a single action

Figure 2: Complex-valued neural network

networks are prepared for each action. A conceptual dia-
gram of a complex-valued RBF network is shown in Fig.1.
This is a single network for a single action. Therefore, mul-
tiple networks are required corresponding to the number of
actions. On the other hand, in our method, the action value
function is expressed in a single network without preparing
multiple networks by inputting both states and actions. A
conceptual diagram of a complex-valued neural network is
shown in Fig.2.

The complex-valued neural network learns using com-
plex back propagation[5]. The following error function is
used in network learning.

E =
1
2

∣∣∣∣[rt+1 + γQ̇(xt+1,a
′
t+1)
]
eiω − Q̇(xt,at)

∣∣∣∣2 (9)

The update equations for each network parameter are the
followings.

δ̇t =
[
rt+1 + γQ̇(xt+1,a

′
t+1)
]
eiω − Q̇(xt,at) (10)

∆ḃo = −αo ∂E

∂Re(̇bo)
− iαo ∂E

∂ Im(ḃo)

= αoδ̇t (11)

∆ẇo
k = −αo ∂E

∂Re(ẇo
k)
− iαo ∂E

∂ Im(ẇo
k)

= ∆ḃo¯̇ξk (12)

- 565 -



GOAL

Figure 3: Mountain Car Task

∆ḃh
k = −αh ∂E

∂Re(̇bh
k)
− iαh ∂E

∂ Im(ḃh
k)

= αh
{
(1−Re(̇ξk)

2)(Re(̇δt) Re(ẇo
k)+Im(δ̇t) Im(ẇo

k))

+ i(1−Im(ξ̇k)
2)(Im(δ̇t) Re(ẇo

k)−Re(̇δt) Im(ẇo
k))
}

(13)

∆ẇh
k j = −αh ∂E

∂Re(ẇh
k j)
− iαh ∂E

∂ Im(ẇh
k j)

= ∆ḃh
k

¯̇X j (14)

3. Experiments

3.1. Environment

In order to verify the performance of our method in
continuous space, we experiment with the Mountain Car
task[6] whose states are continuous. The shape of the en-
vironment is shown in Fig.3. An agent has a position and
a velocity as a state, and determines an acceleration direc-
tion by an action. The velocity is updated by the position
and action, and the position is updated by the velocity. The
velocity and position updating equations are shown below.

v ← v+ 0.001a− 0.0025 cos(3x) (15)

x ← x+ v (16)

where x is the position andv is the velocity. The range
of each value is−0.07≤ v ≤ 0.07, and−1.2 ≤ x ≤ 0.5. a
is the action which is either of left acceleration (−1), no
acceleration (0), right acceleration (1). The initial state is
x = −0.5, v = 0, and reward is given when reaching the
target statex ≥ 0.5. The target state is on the top of the
mountain, and in order to climb the mountain, it is nec-
essary to make momentum from the opposite mountain.
Here, we restrict the perception of the agent to only the
position, causing perceptual aliasing. That is, we experi-
ment with the number of dimensions of states,n = 1, the

Table 1: Parameters

(Proposed) (Conventional) (Table)
N 2 1

—
H 30
αo 0.001 0.01

0.1
αh 0.0001 0.001
γ 0.7 0.99
ω π/180
r 100

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600 700 800 900 1000

s
te

p

episode

Conventional
Proposed

Table

Figure 4: Results

number of dimensions of actions,m = 1, and the number
of inputs,N = 2.

3.2. Simulation settings

We compare the proposed method with the usualQ̇-
learning using a table function (Table) and the conven-
tional method expressing the action value function with a
complex-valued RBF network (conventional). The param-
eters of each method are shown in Table 1. In each method,
an action selection method is Boltzmann selection. Boltz-
mann temperature is set toτ = 0.5 in each method. In
a usualQ̇-learning using a table function, since the state
requires fine discretization, the value is discretized up to
the third decimal place. In the complex-valued neural net-
work, the value range of the input is changed so as to be
all positive values. That is, the value set of the input action
was changed from{−1,0,1} to {0,5,10}. One action se-
lection is one step, and the seaquence from the initial state
to reaching the target state is one episode. 1000 episodes
executions is one trial. The number of trials is 50.

3.3. Results

The experimental results are shown in Fig.4. Although
the number of steps is gradually decreasing in theQ̇-
learning using a table function, the learning speed is slow

- 566 -



and the learning does not converge even at 1000 episode.
This is because the number of the discretized states in the
task is large, and the large number of episodes are neces-
sary for the learning. On the other hand, in the methods
using the function approximators, since the action values
of the unlearned states can also be generalized from the ex-
perienced action values, the learning speed is fast. In theQ̇-
learning using complex-valued RBF network, independent
networks are used for each action, whereas the proposed
method shares a single network. Still at 1000 episodes,
both methods have converged to almost the same number
of steps.

Since the proposed method expresses the action value
function in a single network, the required number of net-
work parameters is smaller than that of the conventional
method using independent networks. That is, the proposed
method requires less memory size.

In this experiment, the number of network parameters in
Q̇-learning using complex-valued RBF network is 540, and
that in the proposed method is 242. When the number of
actions is larger, it seems that approximation by the pro-
posed method becomes more difficult, but the difference in
the number of network parameters with the conventional
method becomes wider; the proposed method can be ap-
plied to larger-scale environments easily.

4. Conclusion

We proposed a method to approximate the action value
function by a complex-valued neural network for complex-
valued reinforcement learning, which is a method cop-
ing with perceptual aliasing. Simulation experiments were
conducted in Mountain Car tasks, and it is confirmed that
the proposed method can learn even in an environment with
the continuous states and perceptual aliasing. We also com-
pared the proposed method with complex-valued reinforce-
ment learning using a complex-valued RBF network which
is an existing method, and finally obtained almost the same
learning results. The proposed methods can suppress an
increase of the number of network parameters for environ-
ments with the large number of actions.

The future tasks are to verify the performance in other
environments and to examine the influence on the perfor-
mance against the increase in the number of actions.

References

[1] Richard S. Sutton and Andrew G. Barto, “Reinforce-
ment Learning:An Introduction,” MIT press, 1998.

[2] T. Hamagami, T. Shibuya, and S. Shimada, “Complex-
Valued Reinforcement Learning,” in Proceedings of
IEEE international Conference on the Systems. Man
and Cybernetics 2006, vol. 5, pp .4175–4179, 2006.

[3] Takeshi Shibuya, Hideaki Arita and Tomoki Ham-
agami, ”Reinforcement Learning in Continuous State

Space with Perceptual Aliasing by using Complex-
valued RBF Network,” Systems Man and Cybernetics
(SMC), 2010 IEEE International Conference, pp1799–
1803, Istanbul, Turkey, Oct.2010.

[4] A. Hirose, “Advantages and their origins of complex-
valued neural networks (in Japanese),” IEICE Techni-
cal Report Vol. 109(53), pp7–12, May, 2009.

[5] T. Nitta, “An extension of the back-propagation algo-
rithm to complex numbers,” Neural Networks 10(8),
pp1391–1415, 1997.

[6] Richard S. Sutton and Andrew G. Barto, “Reinforce-
ment Learning:An Introduction,” MIT press, pp234–
235, 1998.

- 567 -


