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Abstract—In this paper, we empirically analyze
the behaviors of the Variational Bayes algorithm for
the mixture model. While the Variational Bayesian
learning has provided computational tractability and
good generalization performance in many applications,
little has been done to investigate its properties. Re-
cently, the stochastic complexity of mixture models in
the Variational Bayesian learning was clarified. By
comparing the experimental results with the theoret-
ical ones, we discuss the properties of the practical
Variational Bayes algorithm.

1. Introduction

Mixture models are widely used especially in statis-
tical pattern recognition or data clustering and closely
related to several neural network models[2]. The Vari-
ational Bayesian (VB) framework was proposed as an
approximation of the Bayesian learning for the models
with hidden variables including mixture models[1][4].
The VB learning has been applied to various learn-
ing machines and it has performed good generaliza-
tion with only modest computational costs compared
to Markov chain Monte Carlo methods that are the
major schemes of the Bayesian learning. However, lit-
tle has been done to investigate the properties of the
VB learning itself.

Recently, as an initial discussion of the theoret-
ical properties of the VB learning, the asymptotic
form was obtained for the stochastic complexities in
the VB learning of mixtures of exponential-family
distributions[5]. This enabled us to investigate the
properties of the practical VB learning involving an
iterative algorithm and suffering from the problems
such as local minima.

In this paper, we experimentally analyze the behav-
iors of the VB algorithm for the mixture model and
discuss the properties of it in terms of the redundancy
of the model and the hyperparameter in the prior dis-
tribution. The VB algorithm is a procedure of mini-
mizing the functional that finally gives the stochastic
complexity. We experimentally examine whether the
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algorithm converges to the optimal solution instead of
local minima by a comparison of the experimental re-
sults with the theoretical upper bound of the stochas-
tic complexity.

In Section 2, the mixture of exponential family
model is introduced. In Section 3, the VB learning
is outlined, then the VB algorithm and the theoreti-
cal upper bound of the stochastic complexity for the
mixture models are described. We present the experi-
mental results in Section 4 and discuss them in Section
5. Finally, conclusion follows in Section 6.

2. Mixture of Exponential Family

Denote by c(x|b) a probability density function of
the input x ∈ RN given an M -dimensional parameter
vector b = (b(1), b(2), · · · , b(M))T ∈ B where B is a
subset of RM . The general mixture model p(x|θ) with
a parameter vector θ is defined by

p(x|θ) =

K∑
k=1

akc(x|bk),

where K is the number of components and {ak|ak ≥
0,

∑K
k=1 ak = 1} is the set of mixing proportions. The

model parameter θ is {ak, bk}K
k=1.

A model p(x|θ) is called a mixture of exponential
family (MEF) model if c(x|b) is given by the form,

c(x|b) = exp{b · f(x) + f0(x) − g(b)}, (1)

where b ∈ B is called the natural parameter, b ·
f(x) is the inner product with the vector f(x) =
(f1(x), · · · , fM(x))T , f0(x) and g(b) are real-valued
functions of the input x and the parameter b, respec-
tively. Suppose functions f1, · · · , fM and a constant
function are linearly independent.

The conjugate prior distribution ϕ(θ) for the MEF
model is given by the product of the following two
distributions on a = {ak}K

k=1 and b = {bk}K
k=1

ϕ(a) =
Γ(Kφ0)

Γ(φ0)k

K∏
k=1

aφ0−1
k , (2)

ϕ(b) =

K∏
k=1

exp{ξ0(bk · ν0 − g(bk))}
C(ξ0, ν0)

. (3)
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Constants ξ0 > 0, ν0 ∈ RM and φ0 > 0 are called
hyperparameters and C(ξ, µ) =

∫
exp{ξ(µ·b−g(b))}db

is a function of ξ ∈ R and µ ∈ RM .
The mixture model can be rewritten by us-

ing a hidden variable y = (y1 , · · · , yK) ∈
{(1, 0, · · · , 0), · · · , (0, 0, · · ·, 1)}, as

p(x, y|θ) =

K∏
k=1

[
akc(x|bk)

]yk

.

If and only if the datum x is generated from the kth
component, yk = 1.

3. Variational Bayesian Learning

Suppose n training samples Xn = {x1, · · · , xn} are
independently and identically taken from the true dis-
tribution p0(x). The Bayesian posterior distribution
is defined by

p(θ|Xn) =
1

Z(Xn)
exp(−nHn(θ))ϕ(θ), (4)

where ϕ(θ) is the prior distribution, Hn(θ) =
1
n

∑n
i=1 log p0(xi)

p(xi|θ) and Z(Xn) is the normalization con-
stant. The stochastic complexity is defined by

F (Xn) = − log Z(Xn), (5)

which is also called the free energy and is impor-
tant in most data modelling problems. However,
the Bayesian posterior distribution and the stochas-
tic complexity typically cannot be obtained analyti-
cally. Let {Xn, Y n} = {(x1, y1), · · · , (xn, yn)} be the
complete data. In the VB framework, the Bayesian
posterior p(Y n, θ|Xn) of the hidden variables and the
parameters is approximated by the variational poste-
rior q(Y n, θ|Xn), which factorizes as

q(Y n, θ|Xn) = Q(Y n|Xn)r(θ|Xn), (6)

where Q(Y n|Xn) and r(θ|Xn) are posteriors on the
hidden variables and the parameters respectively. The
variational posterior q(Y n, θ|Xn) is chosen to mini-
mize the functional F [q] defined by

F [q] =
∑
Y n

∫
q(Y n, θ|Xn) log

q(Y n, θ|Xn)
p(Xn , Y n, θ)

dθ, (7)

= F (Xn) + K(q(Y n, θ|Xn)||p(Y n, θ|Xn)), (8)

where K(q(Y n, θ|Xn)||p(Y n, θ|Xn)) is the Kullback
information between the true Bayesian posterior
p(Y n, θ|Xn) and the variational posterior q(Y n, θ|Xn)
1. This leads to the following theorem. The proof is
well known[3][4].

1K(q(x)||p(x)) denotes the Kullback information from a dis-
tribution q(x) to a distribution p(x), that is,

K(q(x)||p(x)) =

∫
q(x) log

q(x)

p(x)
dx.

Theorem 1 If the functional F [q] is minimized un-
der the constraint (6) then the variational posteriors,
r(θ|Xn) and Q(Y n|Xn), satisfy

r(θ|Xn) =
1

Cr
ϕ(θ) exp

〈
log p(Xn, Y n|θ)〉

Q(Y n|Xn)
,

(9)

Q(Y n|Xn) =
1

CQ
exp

〈
log p(Xn, Y n|θ)〉

r(θ|Xn)
, (10)

where Cr and CQ are the normalization constants2.

Hereafter, we omit the condition Xn of the variational
posteriors and abbreviate them to q(Y n, θ), Q(Y n)
and r(θ). We define the stochastic complexity in the
VB learning F (Xn) by the minimum of the functional
F [q] , that is,

F (Xn) = min
r,Q

F [q].

Note that eqs.(9) and (10) give only a necessary con-
dition that r(θ) and Q(Y n) minimize F [q].

3.1. VB algorithm for MEF Model

Let yk
i = 〈yk

i 〉Q(Y n), nk =
∑n

i=1 yk
i and νk =

1
nk

∑n
i=1 yk

i f(xi), where yk
i = 1 iff the ith datum xi is

from the kth component. From (9) and the respective
prior (2) and (3), in the case of the MEF model, the
variational posterior r(θ) is obtained as the product of
the following two distributions.

r(a) =
Γ(n + Kφ0)∏K

k=1
Γ(nk + φ0)

K∏
k=1

ank+φ0−1
k , (11)

r(b) =

K∏
k=1

1

C(γk, µk)
exp{γk(µk · bk − g(bk))}, (12)

where µk = nkνk+ξ0ν0
nk+ξ0

and γk = nk + ξ0. Let

ak = 〈ak〉r(a) =
nk + φ0

n + Kφ0
, (13)

bk = 〈bk〉r(bk) =
1

γk

∂ log C(γk, µk)

∂µk

, (14)

and define the variational parameter by θ = 〈θ〉r(θ) =
{ak, bk}K

k=1.Then, putting (10) into (7), we obtain

F (Xn) = min
θ

{K(r(θ)||ϕ(θ)) − (logCQ + S(Xn))},
(15)

where S(Xn) = −∑n
i=1 log p0(x). Hence, the VB al-

gorithm is an update rule for the variational param-
eter θ to attain the minimum in eq.(15) although it
may converges to local minima[4].

Recently, the following theorem was shown ([5]) on
the average stochastic complexity defined by

F (n) = EXn [F (Xn)], (16)

where EXn [·] denotes the expectation value over all
sets of training samples.

2〈·〉p(x) denotes the expectation over p(x).
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Theorem 2 Assume that the true distribution is a
mixture of exponential family model with K0 compo-
nents. Then the average stochastic complexity F (n)
satisfies

F (n) ≤ λ log n + C, (17)

for an arbitrary natural number n, where C is a con-
stant independent of n and

λ =
{

(K − K0)φ0 + MK0+K0−1
2 (φ0 ≤ M+1

2 ),
MK+K−1

2
(φ0 > M+1

2
).
(18)

4. Experiment

In this section, we present the results of experi-
ments where the VB learning is simulated for the mix-
ture model with the 2-dimensional gaussian compo-
nent c(x|b) = 1

2π exp(− ||x−b||2
2 ). This means M = 2.

In the first experiment, we trained the gaussian mix-
ture models with K = 2, 3, 4, 5 components by the VB
algorithm using the data generated by the true distri-
bution with K0 = 2 components. The true distribu-
tion was set to

p(x|θ0) =
1

2
c(x|(2, 2)T ) +

1

2
c(x|(−2,−2)T ). (19)

The hyperparameters were set at φ0 = 1.0, ν0 =
(0, 0)T and ξ0 = 1.0. We prepared two sample sets
with the sample size n = 1000 and n = 100. The
value of K(r(θ)||ϕ(θ)) in eq.(15) was calculated when
the VB algorithm for each data set converged since
it gives the leading term of the stochastic complexity
F (Xn). The difference of them was divided by log 10
so that the average of it gives the coefficient λ if the
average of K(r(θ)||ϕ(θ)) is asymptotically expanded
as

EXn [K(r(θ)||ϕ(θ))] � λ log n + O(1). (20)

Then from Theorem 2, λ ≤ λ should hold unless the
VB algorithm converges to local minima.

We averaged the values of λ over 100 draws of
the sample sets. The results of the averages of λ
are presented in Figure 1 against the number K of
components for two different types of the initial val-
ues of the variational parameter that are (1): ak =
1/K, bk = (0, 0)T (k = 1, 2, · · · , K) and (2): a1 = a2 =
1/2, ak = 0(k ≥ 3), b1 = (2, 2)T , b2 = (−2,−2)T , bk =
(0, 0)T (k ≥ 3).

We also calculated the training error T (Xn) =
1
n

∑n
i=1 log p(xi|θ0)

<p(xi|θ)>r(θ)
and the generalization error

G(Xn) = K(p(x|θ0)||〈p(x|θ)〉r(θ)) where 〈p(x|θ)〉r(θ)

is the predictive distribution in the VB learn-
ing. The generalization error was approximated by
1
n′

∑n′

i=1 log p(x′
i|θ0)

<p(x′
i
|θ)>r(θ)

with test data {x′
i}n′=10000

i=1

generated from the true distribution eq.(19).
Figure 2 shows the averages of the training errors

and the generalization errors for the data set with the
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Figure 1: The stochastic complexity against the num-
ber K of components for the two types (1) (solid line),
(2) (dotted line) of initial values of the variational pa-
rameter and the theoretical bound λ (dashed line).
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Figure 2: Generalization errors (upper two lines) and
training errors (lower two lines) against the number
K of components for the two types (1) (solid lines),
(2) (dotted lines) of initial values of the variational
parameter.

size n = 1000. All these results are multiplied by n =
1000 for scaling purposes.

In the second experiment, to investigate the effect
of the hyperparameter φ0, we calculated the average
stochastic complexities (λ in eq.(20)) of the gaussian
mixture model with K = 4 components trained by the
VB algorithm for various values of the hyperparameter
φ0. We used the same training sets generated by the
true distribution eq.(19) and calculated the values of
λ in the same way as the above. The hyperparameters
except for φ0 were set at ν0 = 0 and ξ0 = 1.0. The av-
erages of λ are presented in Figure 3 for the above two
types of the initial values of the variational parameter.

The training and generalization errors are also cal-
culated and averages of them are presented in Figure
4 and Figure 5.

5. Discussion

In this section, we discuss the experimental results.
We point out that Theorem 2 shows how the hyper-

parameter φ0 influences the process of the VB learn-
ing. More specifically, only when φ0 ≤ (M + 1)/2,
the prior distribution works to eliminate the redun-
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Figure 3: The stochastic complexity against the hy-
perparameter φ0 for the two types (1) (solid line), (2)
(dotted line) of initial values of the variational param-
eter and the theoretical upper bound λ (dashed line).
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Figure 4: Training error against the hyperparameter
φ0 for the two types (1) (solid line), (2) (dotted line)
of initial values of the variational parameter.

dant components that the model has and otherwise
it works to use all the components. First, we discuss
this effect of the hyperparameter φ0 on the actual iter-
ative algorithm of the VB learning. We see in Figure
1 that when φ0 = 1, although there is slight difference
between the two types of the initial values, the ex-
perimental results nearly coincide with the theoretical
upper bound λ in eq.(17). This is true for the results
in Figure 3 when φ0 ≤ M+1

2 = 3
2 . However, when φ0 is

above M+1
2

= 3
2
, the results of λ values are larger than

the theoretical upper bound λ. This means that for φ0

just above M+1
2 , the VB algorithm tends to converge

to local minima at least for the two types (1) and (2)
of the initial values.

Next, we discuss the relationship between the
stochastic complexity and the training or generaliza-
tion errors. Although the theoretical behaviors of the
average generalization error and the average training
error are still unknown, we observe the following ten-
dencies about the relationship between them. As we
can see in Figure 1 and Figure 2, the smaller the
stochastic complexity (the value of λ), the smaller the
generalization error. However, the generalization error
increases little while the stochastic complexity grows
proportionally to the number K of the components,
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Figure 5: Generalization error against the hyperpa-
rameter φ0 for the two types (1) (solid line), (2) (dot-
ted line) of initial values of the variational parameter.

that is, the redundancy of the model. As can be seen
also in Figure 3 and Figure 5, the smaller the stochastic
complexity, the smaller the generalization error. How-
ever, this is not true for the training error in Figure
2 and Figure 4. The smaller training error does not
mean the better generalization. These results suggest
that the stochastic complexity F (Xn) is more appro-
priate than the training error as a criterion to select
the model whose generalization is good.

6. Conclusion

In this paper, we presented the experimental results
of the VB learning of the gaussian mixture model.
Comparing them with the theoretical results, we inves-
tigated the properties of the practical VB algorithm.

We conclude with the three observations on the VB
algorithm. (i). For φ0 ≤ M+1

2 , the VB algorithm
often finds the minimum of the stochastic complexity.
However, for φ0 just above M+1

2 , it tends to converge
to local minima. (ii). The model with the smaller
training error does not have the smaller generalization
error. (iii). The model with the smaller stochastic
complexity often has the smaller generalization error.
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