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Abstract—Multi-Objective Particle Swarm Optimizer plural islands of single-objective PSOs. In IMOPSO, each
(MOPSO) is a kind of metaheuristic algorithms for solv-island searches solution by its own evaluation. Therefore, it
ing multi-objective optimization problems. In MOPSOQO,is possible to maintain diversity of solutions without shar-
a global best solution set corresponding to the Pareto sioig processing, and to reduce the amount of calculation. As
lution set is stored in an archive memory. Island-moded problem, searching can sometimes stagnate by the rapid
MOPSO (IMOPSO) has a tree topology of sub-swarmgonvergence of single-objective PSOs at an early stage. In
a upper layer sub-swarm search the Pareto solution setthis research, we add a migration topology between single-
the multi-objective function, while lower layer sub-swarmsobjective PSOs. In order to verify théfectiveness of the
search the best solutions in each single objective functioproposed method, we performs experiments with several
IMOPSO can #ectively search high-quality Pareto solu-representative benchmark functions.
tion set. This paper investigates the performance of some
migration strategies. Then, it is shown that a migratio
strategy between lower layer sub-swarms can provide tte
good search performance. In the simulation experiments
the results for some benchmark problems are shown.

Multi-objective optimization problem

'In the optimization problem, the objective function is
optimized according to defined constraints. The multi-
objective optimization problem is formulated as Equation
1. Introduction D).

In varioys en_gineering systems, there are opti_mi_zation minimize  {X) = (fi(X), ..., fw(X))
problems in which the design parameters are optimized to
obtain desired systems. The problems which have multiple
objective functions are called multi-objective optimization -
pr(J)bIems. The multi-objective optimiiation er(;bIems rewheref = (f1, ... fw), T : 5 — R areM objective func-
quire that all objective function values are optimized. How!'ons to b? m|n|rrr]1|z.ed lat tg? se}mefnme-, amn_ds —R(e
ever, each objective function often has a trafferelation- '{1,t'r.1‘é I\s/gl)ultsi:nagngr—‘g]?['? [qut')\(f isu%(:etlggl.l;tigxr?smg((:?in
ship with each other. Therefore, the Pareto front approaiﬁ ) . B b P
aims to obtain a solution set called Pareto optimal front s eb dlmensmr}s. . . . .
lutions in which each solution is not inferior to each other When the objective functions are in a tragelation-

for all objective function values. Particle Swarm OptimizelShip with each_ other in _the multi-object_ive optimization
(PSO) is one of optimization methods [1]. In PSO, partiPrOblem’ there is no solution capable of simultaneously op-

cles search solutions in a problem. Each particle has Vgr_nizing all the objective functions. In the multi-objective

locity and position information, and has a personal be ptimization problems, the goal is to find a set of solutions

solution found by the particle in the search process and'gat can npt bIe slup_erlor c_)rrhmfenor t? eacz kc))thehr, callei
global best solution (gbest) among all particles as infOIJ-3 are:o optt_lmal sol utt_lons._ ﬁ cdu:%/e Pormf: f yi eseto
mation shared in the swarm in the search process. ps@greto optimal solutions is called the Pareto front.

can fast solve various optimization problems by using sim-

ple operations. Multi-Objective Particle Swarm Optimizer3. |sland-model MOPSO

(MOPSO) is the modified PSO to solve multi-objective op-

timization problems [2]. In the general MOPSO, gbest is PSO is a kind of meta-heuristic algorithms that conduct
selected from the gbest storage named archive at randomulti-point search, and mimics social behavior of living or-
MOPSO has a sharing process that gives gbest diversiganisms. In PSO, particles existing in solution space have
However, there is a problem that the calculation amourgosition information and velocity information. Solutions
is increased by the sharing processing. Therefore, Islangre searched by moving particles in solution space. Each
model MOPSO (IMOPSO) has been proposed to solve thgrticle moves around in the search space, taking advan-
problem [3]. IMOPSO is a parallelized model in whichtage of each own local best known position (pbest) , and is
the particle swarm is divided into an island of MOPSO anelso guided toward the best known position (gbest) of the

1)

subjectto xS c RP
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Figure 1: IMOPSO Figure 2: Proposed model

whole swarm. The position and velocity of each particlés shown in Fig.2. In the proposed algorithm, by the mi-

are updated by the following equation. gration between lower layer islands, a particle group opti-
) mizing an objective function can obtain particles from the
vikj+1 =WV, + Clral’ldl(Flbesli‘j - Xikj) other particle groups optimizing fiiérent objective func-

(2)  tions. The migrating particles move toward gbest of the
new particle group. Then, these particles can search a vari-
Kl kel ety of solutions along Pareto front. By using the proposed
% i Xij +Vij 3) network topology, local search and global search can be
wherex s a particle’s positiony is a particle’s velocityi is ~ Performed in the lower layer. Therefore, we can expect to
the particle number is the ingredient of a variable vector, &fectively find many Pareto optimal solutions.
randy, rand, are uniform random numbers for [0,1§,is an
inertia codficient, andt, ¢, are weight cofficients. Onthe 5. Simulation Experiments
other hand, MOPSO has an archive mechanism that stores ]
multiple gbests. When updating the velocity, one of the !n the experiments we used the ZDT benchmark prob-
stored gbests is assigned randomly to each particle for ed€iS [4] and the DTLZ benchmark problems [5]. In the
iteration. ZDT benchmark problems, comparison experiments were
In the IMOPSO, the island model with a two-layer tregconducted with IMOPSO (Conventional) and proposed al-
structure is used. Single-objective islands are located @@rithm (Proposed). In the DTLZ benchmark problems,
lower hierarchy, and a multi-objective island is located af’& conducted comparison experiments with IMOPSO, the
upper hierarchy. A conceptual diagram of IMOPSO iProposed algorithm, and a three-layer tree structure model
shown in Fig.1. Each island of the lower hierarchy eval(3 layer). A conceptual diagram of the three-layer tree
uates each single objective function and it does not evafiructure model is shown in Fig.3. The three-layer tree
uate other objective functions. Also, since it is similar tgStructure model is a model in which each two-objective
the conventional PSO, each island of the lower hierarcff/OPSO is added between the upper layer and the lower
has independent and unique gbest, and only updates {R¥er with respect to the three objective problems. We
archive for the island of the upper hierarchy. On the islantiS€ Generational Distan¢&D) and Inverted Generational
of the upper hierarchy, all objective functions are evaluatedistance(IGD) as performance metrics [6]. They calculate
using the Pareto ranking_ AISO, this island refers to and uﬁhe.distances between the Pareto front obtained by each al-
dates the archive. In IMOPSO, it is possible to search mo&rithm andPFye; the known true Pareto front.
efficiently by migrating particles between the upper layer
island and the lower layer islands in every certain period.
With such a network topology, it is possible tfieiently

perform global search and local search, and to maintain di-
. . 2 ¢ | Archive
versity of solutions. &

-]
7~ N
4. Proposed Algorithm XX
(opology between each jower layer land. The aranwe s (50 (A& (A D

common for each island. It is referred only by the upper
layer island, and is updated by both upper and lower layer Figure 3: Three-layer tree structure model
islands. A conceptual diagram of the proposed algorithm

+ czrandz(gbesf - xikj)

k
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Table 1: Experiment parameters

ZDT4 | 450(150x 3)
Number of particles DZ'IPL-I_ZGZ 600(200x 3) 8
BDTLZ7 600(150x 4) o1} L
Number of generations 1x10° e
Number Of dlmenslons 10 ©-0001 o 10000 20000 30000 4?%0EOI?§OAOQ|—O|g)o’(\)IOO 70000 80000 9000010000
w 0.9 100 Conventional ——
Proposed —
C1, Gz 1.0 o} ° ]
Archive size 900 .

o
€]

0.01

Table 2: Experiment result

Algorithm H‘ GD IGD 0-001 535600 26600 36660 000 80530 50000 70000 80000 9000010000
ZDT4 Conventional||| 0.021351 0.003641 ' St ]
Proposed 0.000762 0.002033 o8l :
ZDT6 Conventional||| 0.007066 0.014386 el
Proposed 0.003848 0.001076 Q&
Conventional||| 0.017757 0.025835 o4r
DTLZ2 Proposed 0.013257 0.026907 ozl
3 layers 0.051723 0.040915
Conventional||| 2.036947 0.346174 ‘o 02 04 08 08 i
DTLZ7 Proposed 0.288848 0.064085
3 layers 1.007784 0.237595 Figure 4: ZDT4

The parameters used in the ex_penr_nents are shown in Téi\fer, in another three objective problem (DTLZ2), it was
bles 1 and 2. The number of migrating particles between, "' .
._“Inferior to the other two methods. For this reason, even
the upper and lower layers was set to 12, and the migrg-; ; : .
L . IT simply increasing the number of layers, improvement of
tion interval was set to every 20 generation. The number .
S . ) performance can not be expected. From these results, it
of migrating particles between the lower layers in the pro- . o .
. . n be seen that with the proposed method, it is possible

posed algorithm was set to 20, and the migration mtervz%fla .

. .10 promote Pareto solution search by lower layers and to
was set to every 100 generation. We executed 30 trials 0. -pe from local solutions by addina miaration between
each ZDT benchmark problem and 10 trials in each DTL b y gmg

each lower layer.

benchmark problem, and the average values were taken as
the experimental values. Table 3 shows the experimental
results. Figure 4-7 show transition diagramsGD and
IGD for each generation and the particles of the archive at i
the final generation in the proposed algorithm. 6. Conclusion

The proposed algorithm is equivalent to or superior to
the conventional algorithm in most test problems. ZDT4 In this paper, we proposed a model with a migration
has a multimodal characteristic, and in the conventionatrategy between lower layer PSOs in two-layer tree struc-
method, it falls into local solutions, which form a Paretaure. As a result of comparative experiments between pro-
front far from PF . However, we can see that the pro-posed algorithm and conventional algorithms, the proposed
posed algorithm was able to form a Pareto front fidar,e.  algorithm can find Pareto optimal solutions with higher ac-
ZDT6 has a bias between a decision variable and an objezuracy than the conventional algorithms. In addition, even
tive function, and it was able to approaFky . in both the when the number of objective functions increased, search
conventional algorithm and the proposed algorithm. Howperformance was improved. In other words, by simply
ever, it should be noted that the proposed algorithm shovesiding a simple particle migration network, it was possi-
higher IGD than the conventional algorithm. DTLZ7 is able to improve the search performance without applying a
matter of three objectives, and has discontinuBl&,.. large calculation cost. As a future task, the proposed algo-
From the values o6D and IGD, performance improve- rithm is applied to more benchmark problems. Especially,
ment was seen in the proposed algorithm. The three-layitlis necessary to verify the performance when the number

tree structure model exceeded IMOPSO in DTLZ7. Howef objectives and decision variables increases.
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Figure 5: ZDT6
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Figure 7: DTLZ7



