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Abstract—Multi-Objective Particle Swarm Optimizer
(MOPSO) is a kind of metaheuristic algorithms for solv-
ing multi-objective optimization problems. In MOPSO,
a global best solution set corresponding to the Pareto so-
lution set is stored in an archive memory. Island-model
MOPSO (IMOPSO) has a tree topology of sub-swarms;
a upper layer sub-swarm search the Pareto solution set in
the multi-objective function, while lower layer sub-swarms
search the best solutions in each single objective function.
IMOPSO can effectively search high-quality Pareto solu-
tion set. This paper investigates the performance of some
migration strategies. Then, it is shown that a migration
strategy between lower layer sub-swarms can provide the
good search performance. In the simulation experiments,
the results for some benchmark problems are shown.

1. Introduction

In various engineering systems, there are optimization
problems in which the design parameters are optimized to
obtain desired systems. The problems which have multiple
objective functions are called multi-objective optimization
problems. The multi-objective optimization problems re-
quire that all objective function values are optimized. How-
ever, each objective function often has a trade-off relation-
ship with each other. Therefore, the Pareto front approach
aims to obtain a solution set called Pareto optimal front so-
lutions in which each solution is not inferior to each other
for all objective function values. Particle Swarm Optimizer
(PSO) is one of optimization methods [1]. In PSO, parti-
cles search solutions in a problem. Each particle has ve-
locity and position information, and has a personal best
solution found by the particle in the search process and a
global best solution (gbest) among all particles as infor-
mation shared in the swarm in the search process. PSO
can fast solve various optimization problems by using sim-
ple operations. Multi-Objective Particle Swarm Optimizer
(MOPSO) is the modified PSO to solve multi-objective op-
timization problems [2]. In the general MOPSO, gbest is
selected from the gbest storage named archive at random.
MOPSO has a sharing process that gives gbest diversity.
However, there is a problem that the calculation amount
is increased by the sharing processing. Therefore, Island-
model MOPSO (IMOPSO) has been proposed to solve this
problem [3]. IMOPSO is a parallelized model in which
the particle swarm is divided into an island of MOPSO and

plural islands of single-objective PSOs. In IMOPSO, each
island searches solution by its own evaluation. Therefore, it
is possible to maintain diversity of solutions without shar-
ing processing, and to reduce the amount of calculation. As
a problem, searching can sometimes stagnate by the rapid
convergence of single-objective PSOs at an early stage. In
this research, we add a migration topology between single-
objective PSOs. In order to verify the effectiveness of the
proposed method, we performs experiments with several
representative benchmark functions.

2. Multi-objective optimization problem

In the optimization problem, the objective function is
optimized according to defined constraints. The multi-
objective optimization problem is formulated as Equation
(1).

minimize f(x) = ( f1(x), ..., fM(x))

sub ject to x∈ S ⊂ RD (1)

where f = ( f1, ..., fM), f : S → RM areM objective func-
tions to be minimized at the same time, andfi : S→ R (i ∈
{1, ...,M}) is each single objective function.x = (x1, ..., xD)
is the solution andS =

∏D
j=1[a j ,b j ] is the solution space in

theD dimensions.
When the objective functions are in a tradeoff relation-

ship with each other in the multi-objective optimization
problem, there is no solution capable of simultaneously op-
timizing all the objective functions. In the multi-objective
optimization problems, the goal is to find a set of solutions
that can not be superior or inferior to each other, called
Pareto optimal solutions. The curve formed by the set of
Pareto optimal solutions is called the Pareto front.

3. Island-model MOPSO

PSO is a kind of meta-heuristic algorithms that conduct
multi-point search, and mimics social behavior of living or-
ganisms. In PSO, particles existing in solution space have
position information and velocity information. Solutions
are searched by moving particles in solution space. Each
particle moves around in the search space, taking advan-
tage of each own local best known position (pbest) , and is
also guided toward the best known position (gbest) of the
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Figure 1: IMOPSO

whole swarm. The position and velocity of each particle
are updated by the following equation.

vk+1
i j
= wvi j

k + c1rand1(pbestk
i j
− xk

i j
)

+ c2rand2(gbestk
j
− xk

i j
)

(2)

xk+1
i j
= xk

i j
+ vk+1

i j
(3)

wherex is a particle’s position,v is a particle’s velocity,i is
the particle number,j is the ingredient of a variable vector,
rand1, rand2 are uniform random numbers for [0,1],w is an
inertia coefficient, andc1, c2 are weight coefficients. On the
other hand, MOPSO has an archive mechanism that stores
multiple gbests. When updating the velocity, one of the
stored gbests is assigned randomly to each particle for each
iteration.

In the IMOPSO, the island model with a two-layer tree
structure is used. Single-objective islands are located at
lower hierarchy, and a multi-objective island is located at
upper hierarchy. A conceptual diagram of IMOPSO is
shown in Fig.1. Each island of the lower hierarchy eval-
uates each single objective function and it does not eval-
uate other objective functions. Also, since it is similar to
the conventional PSO, each island of the lower hierarchy
has independent and unique gbest, and only updates the
archive for the island of the upper hierarchy. On the island
of the upper hierarchy, all objective functions are evaluated
using the Pareto ranking. Also, this island refers to and up-
dates the archive. In IMOPSO, it is possible to search more
efficiently by migrating particles between the upper layer
island and the lower layer islands in every certain period.
With such a network topology, it is possible to efficiently
perform global search and local search, and to maintain di-
versity of solutions.

4. Proposed Algorithm

In this paper, we propose a model with the migration
topology between each lower layer island. The archive is
common for each island. It is referred only by the upper
layer island, and is updated by both upper and lower layer
islands. A conceptual diagram of the proposed algorithm

Figure 2: Proposed model

is shown in Fig.2. In the proposed algorithm, by the mi-
gration between lower layer islands, a particle group opti-
mizing an objective function can obtain particles from the
other particle groups optimizing different objective func-
tions. The migrating particles move toward gbest of the
new particle group. Then, these particles can search a vari-
ety of solutions along Pareto front. By using the proposed
network topology, local search and global search can be
performed in the lower layer. Therefore, we can expect to
effectively find many Pareto optimal solutions.

5. Simulation Experiments

In the experiments we used the ZDT benchmark prob-
lems [4] and the DTLZ benchmark problems [5]. In the
ZDT benchmark problems, comparison experiments were
conducted with IMOPSO (Conventional) and proposed al-
gorithm (Proposed). In the DTLZ benchmark problems,
we conducted comparison experiments with IMOPSO, the
proposed algorithm, and a three-layer tree structure model
(3 layer). A conceptual diagram of the three-layer tree
structure model is shown in Fig.3. The three-layer tree
structure model is a model in which each two-objective
MOPSO is added between the upper layer and the lower
layer with respect to the three objective problems. We
use Generational Distance(GD) and Inverted Generational
Distance(IGD) as performance metrics [6]. They calculate
the distances between the Pareto front obtained by each al-
gorithm andPFtrue; the known true Pareto front.

Figure 3: Three-layer tree structure model
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Table 1: Experiment parameters

Number of particles

ZDT4 450(150× 3)
ZDT6 600(200× 3)

DTLZ2
600(150× 4)

DTLZ7
Number of generations 1× 105

Number of dimensions 10
w 0.9

c1, c2 1.0
Archive size 900

Table 2: Experiment result
　 Algorithm GD IGD

ZDT4
Conventional 0.021351 0.003641

Proposed 0.000762 0.002033

ZDT6
Conventional 0.007066 0.014386

Proposed 0.003848 0.001076

DTLZ2
Conventional 0.017757 0.025835

Proposed 0.013257 0.026907
3 layers 0.051723 0.040915

DTLZ7
Conventional 2.036947 0.346174

Proposed 0.288848 0.064085
3 layers 1.007784 0.237595

The parameters used in the experiments are shown in Ta-
bles 1 and 2. The number of migrating particles between
the upper and lower layers was set to 12, and the migra-
tion interval was set to every 20 generation. The number
of migrating particles between the lower layers in the pro-
posed algorithm was set to 20, and the migration interval
was set to every 100 generation. We executed 30 trials in
each ZDT benchmark problem and 10 trials in each DTLZ
benchmark problem, and the average values were taken as
the experimental values. Table 3 shows the experimental
results. Figure 4-7 show transition diagrams ofGD and
IGD for each generation and the particles of the archive at
the final generation in the proposed algorithm.

The proposed algorithm is equivalent to or superior to
the conventional algorithm in most test problems. ZDT4
has a multimodal characteristic, and in the conventional
method, it falls into local solutions, which form a Pareto
front far from PFtrue. However, we can see that the pro-
posed algorithm was able to form a Pareto front nearPFtrue.
ZDT6 has a bias between a decision variable and an objec-
tive function, and it was able to approachPFtrue in both the
conventional algorithm and the proposed algorithm. How-
ever, it should be noted that the proposed algorithm shows
higher IGD than the conventional algorithm. DTLZ7 is a
matter of three objectives, and has discontinuousPFtrue.
From the values ofGD and IGD, performance improve-
ment was seen in the proposed algorithm. The three-layer
tree structure model exceeded IMOPSO in DTLZ7. How-
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Figure 4: ZDT4

ever, in another three objective problem (DTLZ2), it was
inferior to the other two methods. For this reason, even
if simply increasing the number of layers, improvement of
performance can not be expected. From these results, it
can be seen that with the proposed method, it is possible
to promote Pareto solution search by lower layers and to
escape from local solutions by adding migration between
each lower layer.

6. Conclusion

In this paper, we proposed a model with a migration
strategy between lower layer PSOs in two-layer tree struc-
ture. As a result of comparative experiments between pro-
posed algorithm and conventional algorithms, the proposed
algorithm can find Pareto optimal solutions with higher ac-
curacy than the conventional algorithms. In addition, even
when the number of objective functions increased, search
performance was improved. In other words, by simply
adding a simple particle migration network, it was possi-
ble to improve the search performance without applying a
large calculation cost. As a future task, the proposed algo-
rithm is applied to more benchmark problems. Especially,
it is necessary to verify the performance when the number
of objectives and decision variables increases.
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