2017 International Symposium on Nonlinear Theory and Its Applications,

N ?oL\;A NOLTAZ2017, Cancun, Mexico, December 4-7, 2017

A Co-Evolutional Particle Swarm Optimizer with Dynamic
Re-Grouping Schemes

Ryosuke Kikkawa', Hidehiro Nakano' and Arata Miyauchi'

tFaculty of Knowledge Engineering, Tokyo City University
1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan
Email: g1681514@Qtcu.ac.jp, hnakano@tcu.ac.jp, miyauchi@ic.cs.tcu.ac.jp

Abstract—Particle Swarm Optimizer (PSO) is a
kind of metaheuristic algorithms for solving optimiza-
tion problems with continuous objective functions.
PSO can be executed based on the simple dynam-
ics of search particles. For solving high-dimensional
optimization problems with the large number of de-
sign variables, Cooperative Particle Swarm Optimizer
(CPSO) has been proposed. In CPSO, each sub-swarm
searches partial solutions in each sub-space given by
the division of search space. Integrating the partial so-
lutions, CPSO can obtain solution candidates for the
optimization problems. This paper proposes dynam-
ical and deterministic grouping methods for the sub-
swarms in CPSO. In the simulation experiments, the
results for some benchmark problems are shown.

1. Introduction

Along with the recent increase in the scale and com-
plexity of systems, demands for solving optimization
problems faster in designing and constructing systems
have been increasing. Since it takes a huge amount of
time to find the exact optimal solution, metaheuris-
tics has been studied extensively, which can obtain an
approximate solution of the best solution within prac-
tical time. Metaheuristics is a heuristic method for
optimization problems, and can be applied to various
system design problems. Various metaheuristic algo-
rithms have been proposed. One of them is Particle
Swarm Optimization (PSO) [1]. PSO is a method de-
signed to imitate the behavior of living creatures such
as the flock of birds and fishes. In PSO, the organisms
forming the flock are regarded as particles, and the
particles find an optimal solution by searching the so-
lution space. PSO has high convergence performance
and can obtain a solution speedily. However, in high
dimensional problems, PSO degrades the search per-
formance and the solution accuracy may degrade in
some cases. In order to improve the solution accu-
racy of the high dimensional problems, a method that
introduces the concept of co-evolution into the opti-
mization method has been proposed [2]. Co-evolution
algorithms deal with high-dimensional problems by di-

low dimensional partial search space. The Coopera-
tive Particle Swarm Optimizer (CPSO) which adopts
a co-evolutionary algorithm divides the particle group
into a plurality of sub particle groups and searches for
individual low dimensional search space. This method
can realize to search for solutions without degrading
performance against high dimensional problems [3].
Since CPSO is a method in which each sub particle
group independently searches for each divided low di-
mensional partial search space, the search performance
greatly deteriorates in a problem having dependency
among design variables. In this problem, it is effective
to cope with by changing dynamically combinations
of design variables that compose each partial search
space. Conventional research has proposed a method
that uses stochastic rules to randomly recombine de-
sign variables of each partial search space. In this
paper, we propose a method that uses deterministic
grouping rules without stochastic factors. Some re-
sults of numerical experiments for some benchmark
functions are shown.

2. CPSO-S;

Particle Swarm Optimization (PSO) is one of the op-
timization methods designed to imitate the behavior
of living creatures such as the flock of birds and fishes.
In PSO, particles find an optimal solution by search-
ing the solution space. Each particle has the best po-
sition information discovered in the past (pbest) and
acts while sharing the best position information dis-
covered in the whole swarm (gbest). Cooperative Par-
ticle Swarm Optimizer (CPSO) is a PSO variant that
introduces in the concept of cooperative co-evolution.
Cooperative co-evolution algorithm is an algorithm to
cope with high dimensional problems by dividing the
search space, and a solution is searched for divided par-
tial search space based on the concept of co-evolution.
In CPSO-Si which is one of CPSO methods, an n di-
mensional design variables to be searched is divided
into K sets of design variables (partial search space)
of s dimensions, where n = Ks. Further, the particle
group is divided into K sets of sub particle groups,

viding the high-dimensional search space into multip_lqswpd each set of design variables is independently op-

n dimension

Py P, Px

1 s+1 (K—-1s+1
2 s+ 2 (K—1)s+2
S 2s Ks=n

Figure 1: Division of design variables

timized. A conceptual diagram of division of design
variables is shown in Fig.1. Py represents the divided
sub particle group, and each particle in each sub par-
ticle group has s design variables obtained by dividing
n design variables. Each sub particle group optimizes
only the allocated s design variables. By gathering
K partial gbests from K sub particle groups and con-
necting them to a complete gbest, the overall result
(solution) is obtained. The algorithm of CPSO-S}, is
shown below.

1. Initialization
Particle group is divided into K sub particle
groups. Each sub particle group is assigned s de-
sign variables (partial search space). Let 29, be
the position of particle ¢ in sub particle group k&
at iteration 0 and vgi be the velocity. they are
randomly initialized for all particles ki.

2. Updating pbest
Calculate the evaluation value at the current po-
sition in the assigned partial search space of each
particle, by applying the current position to the
relevant part of gbest. Then, the position infor-
mation of the best evaluation in each particle’s
search process is updates as pbest.

3. Updating gbest
The position information of the best evaluation
value is updated as gbest. Applying the pbest of
each particle to the corresponding part of gbest,
compare it with gbest before fitting. When updat-
ing ghest, only design variables of pbest’s partial
search space are updated.

4. Updating velocity
Update velocity by Eq.(1).

t+1 _ t t t
vl =w - vy +cp -1y - (pbesty; — ;)

(1)

+cg - T2 - (pbesty; — ;)

where t represents the current iteration, w rep-
resents the inertial constant. ¢; and ¢ represent
learning coefficients for pbest and gbest. 1 and

g

Figure 2: Proposed method 1

5. Updateing position

Update position by Eq.(2).

t+1 _ .t t+1
Tpi = Tpy+ Vg, (2)

6. Condition judgment
Repeat (2) to (5) until a predetermined number
of times.

In CPSO-S;, when there is a dependency be-
tween design variables in different partial search space,
search performance deteriorates. Therefore, a method
of dynamically recombining the design variables as-
signed to each sub particle group has been proposed.
As a method for recombining design variables, a
method named CPSO-rg that uses stochastic rules to
randomly recombine the design variables of each par-
tial search space has been proposed [4]. By using such
a recombination, CPSO-rg can suppress the influence
due to the dependency between the design variables.

3. Proposed method

In this paper, we propose a deterministic grouping
method of design variables without using random fac-
tors. We propose the following two methods.

3.1. Method 1: Recombination by FIFO

In the proposed method 1, design variables of each
partial search space are sequentially moved to adja-
cent partial search space one by one. A conceptual
diagram of the design variable movement in the pro-
posed method 1 is shown in Fig.2.

In this method, after the movement of s times, the
design variable assigned to the head of a certain sub
particle group moves to the head of the adjacent sub
particle. Also, after the movement of K's times, each
design variable returns to the original position. By
gradually shifting the design variables in the partial
search space, we try to suppress the influence due to

ro represent uniform random numbers of [0, 1]._ 585t1_1e dependency between the design variables.

Figure 3: Proposed method 2

3.2. Method 2: Recombination by the differ-
ence of gbest

In the proposed method 2, design variables of each
partial search space are moved one by one to the ad-
jacent partial search space. The design variables to be
moved are determined by the difference of gbest. A
conceptual diagram of the design variable movement
in the proposed method 2 is shown in Fig.3.

We compare each component of the design variables
in gbest at iteration ¢ and that at the previous iteration
t — 1. The equation for finding the difference of gbest
is shown below.

Difj = |gbest’ — gbest;71| (3)

where gbestﬁ- is the j-th component of the design vari-
ables in gbest. The design variables with the smallest
Dif from each partial search space move to each adja-
cent sub particle group. In each partial search space,
the smallest value of Dif means that the design vari-
able has weak influence in the partial search space.
By moving this design variable to other partial search
space, the search is continued while gathering the de-
sign variables with the dependency in the same partial
search space.

4. Experiment and consideration

We compare the performance by using benchmark
functions for the two proposed methods, and the two
conventional methods CPSO-S; and CPSO-rg. We
use three benchmark functions defined by CEC 2013
Benchmark Function[5]. Also, we define one original
benchmark function. In this experiments, all the op-
timal solutions for the benchmark functions are nor-
malized to 0 for the simplicity of comparison. Experi-
mental parameters are shown in Table 1. The results
of the experiments are shown in Table 2, and Figs.4-
7. From the results, the performance of CPSO-S} is
the highest in Rotated Rosenbrock function. The Ro-
tated Rosenbrock function has a dependency between
design variables, but it is a unimodal function. There-
fore, it seems that performance degradation due to not
performing recombination in CPSO-Sj, did not occur.

Table 1: Setting parameters

CPSO
Particles 100
Iterations 50000
Dimension n 100
Inertial constant w 0.729
Learning coefficient Cy,Cy | 1.4955
Sub particle groups K 5
Trials 10
10° T T
o | CPSO-Sk ———
=0 CPSO-rg
<>“ ProposedMethodl
=l ProposedMethod2
.8
N \\x
=
< 10! E
> |
m
10°

0 10000 20000 30000 40000 5000(

Iteration

Figure 4: Rotated Rosenbrock

than CPSO-Sy, the performance is almost equal to
that of CPSO-rg which performs random grouping.
Since the Rotated Rosenbrock function is a function
having a strong dependency on the adjacent design
variables, it is considered that the effect was not ex-
hibited by the recombination method. We then intro-
duce the original benchmark function named Random
Rotated Rosenbrock Function, in which the order of
the design variables are randomly shuffled. In this
benchmark function, the proposed method 1 exhib-
ited higher performance than the existing methods.
In the Rastrigin function, it is understood that the
performance of the proposed method 2 is the best. A
design variable with a small difference in gbest pro-
vides to the stagnation of the solution search in the
partial search space. Therefore, it is considered that
the movement between the sub particle groups by the
proposed method 2 produced an effect like the re-
initialization processing, and the effect provided good
influence in the Rastrigin function. In the Rotated
Rastrigin function, the performance of the proposed
method 1 is good, and the performance of the proposed
method 2 is lower than those of the conventional meth-
ods. In the proposed method 1, since all design vari-
ables necessarily move between sub particle groups,
the performance is improved in the Rotated Rastrigin
function having dependencies with many variables. On
the other hand, in the proposed method 2, since all de-
sign variables do not necessarily move, it is considered

Although the proposed method has lower performangq586tl_1at the performance is not improved.

Table 2: Experimental results

| Average | Best \ Worst
Rotated Rosenbrock Function
(uni-modal with dependency)
CPSO-S;; | 3.403 x10° [2.033 x 10~2 | 9.797 x 10¢
CPSO-rg | 1.463 x 102 | 8.362x 1073 | 2.625 x 10?
PM1 9.351 x 107 | 3.989 x 10T | 1.923 x 10?
PM2 8.930 x 107 | 1.028 x 1072 | 2.166 x 107
Random Rotated Rosenbrock Function
(uni-modal with dependency)
CPSO-S; | 8.465 x 10 [1.100 x 103 | 2.786 x 102
CPSO-rg | 1.463 x 10% | 8.362 x 1073 | 2.625 x 102
PM1 6.292 x 107 | 1.041 x 1073 | 1.481 x 102
PM2 1.189 x 102 | 4.016 x 10° | 2.139 x 10%
Rastrigin Function
(multi-modal without dependency)
CPSO-S; | 1.855 x 107 [1.412 x 10% | 2.576 x 102
CPSO-rg | 1.860 x 10T | 1.293 x 10T | 2.785 x 102
PM1 4.238 x 100 | 2.387 x 107 | 5.074 x 10!
PM2 1.990 x 101 0.000 9.994 x 1071
Rotated Rastrigin Function
(multi-modal with dependency)
CPSO-S;, | 8.241 x 102 | 5.750 x 102 | 1.004 x 10°
CPSO-rg | 6.849 x 10> | 4.765 x 10> | 1.034 x 10?
PM1 7.478 x 102 | 5.531 x 10> | 1.050 x 103
PM2 1.042 x 10° | 6.059 x 10> | 1.456 x 103
10%

Q CPS0-5k =

= 10tk CP50-rg =

> ProposedMethodi

_5 ol ProposedMethod2

<

T:GS 102 —_ —

>

4]

o 0 10600 20‘000 30;]00 40‘000 5000¢
Iteration

Figure 5: Random Rotated Rosenbrock

5. Conclusion

In this paper, we proposed a grouping method that
does not rely on stochastic rules in CPSO and com-
pared with the conventional methods. From the re-
sults in the simulation experiments, it was confirmed
that performance was improved by the two proposed
methods in plural benchmark functions. In the future
we consider not only to move variables in the partial
search space but also to verify methods such as adjust-
ment of recombining intervals and dynamically chang-
ing the number of sub particle groups.

References
[1] J.Kennedy, “ Particle Swarm Optimization, ” In-

ternation Conference on Neural Networks, Vol.4,
pp-1942-1948 (1995)

2]

- 587 -

CPS0-5k ==
o CPSO-rg = ;
ProposedMethodl
ProposedMethod2

3

3

S

g

Evaluation Value

Q

20000 30000 40000 5000(

Iteration

10000

o

Figure 6: Rastrigin

CPS0-Sk =——

CP50-rg =
ProposedMethodl
ProposedMethod2

\
\ %,
103 F_\

Evaluation Value

0 500 1000 1500 2000 2500 3000

Iteration

Figure 7: Rotated Rastrigin

M. Potter and K. D. Jong, “A cooperative co-
evolutionary approach to function optimization,”
in Proceedings of the Third Conference on Par-
allel Problem Solving from Nature, pp. 249-257,
Springer-Verlag (1994)

F. van den Bergh and A. Engelbrecht, “A coop-
erative approach to particle swarm optimization,”
IEEE Transactions on Evolutionary Computation,
vol. 8, no. 3, pp. 225-239 (2004)

Z. Yang, K. Tang, and X. Yao, “Large scale evo-
lutionary optimization using cooperative coevolu-
tion,” Information Sciences, vol. 178, pp. 2986-
2999, August (2008)

J. J. Liang and B. Y. Qu and P. N. Suganthan and
Alfredo G. Hernndez-Daz, “Problem Definition
and Evaluation Criteria for the CEC 2013 Special
Session on Real Parameter Optimization” Tech-
nical Report 201212, Computational Intelligence
Laboratory, Zhenzhou University, Zhenzyou China
And Technical Report,Nanyang Technological Uni-
versity, Singpore (2013)

