
Consideration on Quantization Functions in Quantized Neural Networks

Takumi Kadokura†, Hidehiro Nakano† and Arata Miyauchi†

†Faculty of Knowledge Engineering, Tokyo City University
1–28–1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan

Email: g1681511@tcu.ac.jp, hnakano@tcu.ac.jp, miyauchi@ic.cs.tcu.ac.jp

Abstract— Quantized Neural Network (QNN) is a kind
of neural networks in which its weights and activations are
quantized. Since QNN can reduce computational quan-
tity and energy consumption by quantization, it is ex-
pected to be used on embedded devices. This paper in-
vestigates quantization functions used for quantizing gra-
dients in QNN. By performing the numerical experiments,
the performances of some quantization functions are com-
pared. We then show that there exists a quantization func-
tion which can keep high performance with low quantiza-
tion bit rate.

1. Introduction

Microprocessors have long been embedded in various
devices around us. Of late years, IoT (Internet of Things),
the idea of connecting such devices to the Internet and al-
lowing them to autonomously manage by exchanging in-
formation, became widely known. Apart from that, along
with improvement of processor’s capability, the method-
ology of machine learning using multi-layer neural net-
works called deep learning has been proposed and ap-
plied research such as speech recognition [1], scene recog-
nition [2], and machine translation [3] has developed
markedly. The development of these applied research is
covered as the development of “Artificial Intelligence (AI)”
by media, and the 3rd AI boom has come.

These two technological developments are often used
in combination, and there are applications in which IoT
senses the data and AI interprets the data for controlling
other devices. However, multi-layer neural networks used
with deep learning require a large number of product-sum
operations of floating point number for forward (and back-
ward) propagation. Therefore, in current common hard-
ware, the use of multi-layer neural networks is very ineffi-
cient. In many application areas of multi-layer neural net-
works, in order to accelerate forward and backward prop-
agation, GPUs (Graphics Processing Units) which are ca-
pable of performing these product-sum operations at high
speed are used [4]. Nevertheless, for IoT devices which
require low power consumption and low cost, it is not real-
istic to use GPUs with high power consumption and large
heat generation.

In attempting to improve the efficiency of multi-layer
neural networks toward such devices, a general technique
is to compress trained networks [5]. In this paper, how-

ever, we focus on Quantized Neural Network (QNN) which
reduces product-sum operations by quantizing parame-
ters [6]. By using QNNs, it is expected to reduce the
amount of calculation and accelerate the computation in
forward propagation. Moreover, it is possible to quantize
gradients which was the study subject in Binarized Neu-
ral Network (BNN) [7], the conventional method of QNN,
and it can lead to reducing the amount of calculation in
backward propagation. However, because there seem to be
some unclear points in the description of the quantization
function of QNN [6], the actual function used for experi-
ments is unknown. Accordingly, we consider some quanti-
zation functions to quantize gradients, and find the function
which can keep high performance with low quantization bit
rate. We also find the relation between error rates on the
test set and quantization errors. We show the results of nu-
merical experiments.

2. Binarized Neural Network (BNN) [7]

BNN is a kind of neural networks in which its weights
and activations (inputs of activation functions) are bina-
rized to 1 bit. In BNN, while its activations are always
binarized, its weights are only binarized at the time of for-
ward propagation. The binarization is defined as follows:

binarize(x) =

+1 if x ≥ 0
−1 otherwise.

(1)

While the stochastic binarization using random numbers is
defined in [7], in this paper, we use the deterministic bina-
rization of Eq. (1).

2.1. Gradients of Binarization Function

From the definition, the derivative of the binarization
function binarize(x) is 0 almost everywhere. Therefore,
the binarization function is not compatible with Stochastic
Gradient Descent (SGD). Accordingly, by using the sim-
ilar technique of straight-through estimator [8], we ignore
the effect of binarization on gradients. However, taking the
saturation effect of binarization into consideration, the gra-
dients are set to 0 outside [−1,+1]. The derivative of the
binarization function is defined in this manner as follows:

d
dx

binarize(x) =

1 if −1 ≤ x ≤ +1
0 otherwise.

(2)
- 568 -

2017 International Symposium on Nonlinear Theory and Its Applications,

NOLTA2017, Cancun, Mexico, December 4-7, 2017

Input value

0

lq1 lq2 lq3

0 0 0

Q
ua

nt
iz

ed
 v

al
ue

Figure 1: 3 quantization functions to be considered

2.2. Binarization of Weights

Above process is applied to all binarization. For bina-
rization of weights, in addition, the real-valued weights are
clipped to [−1,+1] at the time of updating. This is to ensure
that real-valued weights do not become too large despite
having no influence on forward propagation.

3. Quantized Neural Network (QNN) [6]

QNN is the enhanced method of BNN, which replaces
binarization of BNN with quantization to multiple bits.
As a result, QNN can be applied to recurrent neural net-
works [6] such as Long Short Term Memory [9] [10] and
Gated Recurrent Unit [11]. Also, to accelerate backpropa-
gation, QNN quantizes gradients of activations.

However, because there seem to be some unclear points
in the description of the quantization function which is sup-
posed to be obtained by extending the binarization func-
tion of BNN to logarithmic quantization similar to the
LogQuant function [12], the actual quantization function
used for numerical experiments is unknown.

4. Consideration of Quantization Functions

In this section, we consider quantization functions for
quantizing gradients. First, we propose 3 functions based
on the equation of logarithmic quantization in [12]. Note
that

lqs(x,w, s) = sign(x)2clip(round(log2 |x|),−2w−1+s, 0),

sign(x) =

+1 if x > 0
0 if x = 0
−1 otherwise,

clip(x, l, u) =

u if x > u
x if l ≤ x ≤ u
l otherwise,

round(x) = sign(x)⌊|x| + 0.5⌋.

• A function obtained by simply extending binarization
of BNN to logarithmic quantization:

lq1(x,w) =

lqs(x,w, 1) if x , 0
2−2w−1+1 otherwise.

(3)

• A function obtained by adding a representation of 0 to
lq1:

lq2(x,w) =

lqs(x,w, 2) if x , 0
0 otherwise.

(4)

• A function obtained by setting the wider range for 0
compared with lq2:

lq3(x,w) =

lqs(x,w, 2) if |x| > 2−2w−1+1.5

0 otherwise.
(5)

Here, the parameter w is the number of quantization bits.
The 3 quantization functions are illustrated in Fig. 1.

Furthermore, we consider quantization of gradients us-
ing the optimal quantization as a criterion of performance
comparison. In order to perform optimal quantization on
the gradients of activations, it is needed to obtain quantiza-
tion representative values. We use the following method:

1. We train a BNN with the settings shown in Table 1 for
1000 epochs.

2. At this time, by randomly sampling one gradient of
activation in each hidden layer, 50,000,000 pieces of
gradient information (large gradient information) are
obtained for each hidden layer by the end of training.

3. From the large gradient information, we randomly ex-
tract 500,000 pieces of gradient information (small
gradient information) for each hidden layer with no
duplication.

4. From the small gradient information, we search the
quantization representative values that minimize the
quantization error using k-means++ [14] with k = 2w.

5. Experiments and Consideration

We apply the proposed 3 quantization functions and the
optimal quantization to quantization of gradients of QNN
and measure the performance using a benchmark.

As a benchmark, we use MNIST [13] which is a hand-
written digit recognition data set. Each image of MNIST
consists of 28 × 28 pixels, and each pixel is a gray scale
of 256 gradations. MNIST has 10 classes of 0–9, and con-
tains 50,000 samples for training, 10,000 samples for val-
idation (data set for preliminary measuring classification
rate during training), and 10,000 samples for testing, to-
taling 70,000 samples. In this paper, since the benchmark
is a classification problem, we use the classification error
rate as an index of performance. In addition, the number of
quantization bits for quantizing gradients is varied to 4, 5,
6, and we train the network for 1000 epochs. Further, we
compute quantization errors for each quantization function
for the large gradient information obtained by the above
method.- 569 -

Table 1: Experimental parameters
Size of mini-batch 100
Adam [15] Learning rate Exponentially decaying from 3.0E−3 to 3.0E−7

β1 0.9
β2 0.999
ϵ 1.0E−08

Batch Normalization [16] α 0.1
ϵ 1.0E−04

Number of neurons 784 = 28 × 28, 4096, 4096, 4096, 10
Probability of Dropout [17] Input layer 0.2

Hidden layers 0.5
Activation function binarize(·)
Weight learning rate scaling factor 1

/ √
1.5/(Number of input neurons + Number of output neurons)

Experimental parameters are shown in Table 1. We test
the proposed 3 quantization functions on 2 different loss
functions: cross entropy loss function and squared hinge
loss function. Note that we realize quantization by replac-
ing the input value with the nearest quantization represen-
tative value.

5.1. Cross Entropy Loss Function

Experimental results for cross entropy loss function are
shown in Fig. 2 (upper). lq2 has similar quantization er-
rors as lq1, but its performance has improved. As com-
pared with lq1, lq2 can represent 0, but the quantization
around 0 is rough. However, the roughness is unlikely to
directly contributes to performance improvement. On the
other hand, in gradients of activations, we obtained the re-
sult that the frequency of 0 is an order of magnitude higher
from the preliminary experiment, and Dropout [17] uses
gradients of 0. The ability to represent 0 is important in
quantization of gradients, and therefore performance has
improved.

lq3 is better for both quantization errors and performance
than lq2. lq2 is slightly better than lq3 in 5 bit, but the
difference is less than 1%, which is the effect of random
numbers.

lq3 is a comparable performance to the the optimal quan-
tization. Since its quantization errors are lower than other
functions, this is because quantization with less informa-
tion loss can be achieved. However, since lq3 is inferior in
performance and quantization errors to the optimal quanti-
zation in 4 bit, we should consider the range quantized to
0.

5.2. Squared Hinge Loss Function

Experimental results for squared hinge loss function are
shown in Fig. 2 (lower). Like the case of cross entropy,
the quantization functions that can handle 0 (lq2, lq3) are
good performance. However, unlike the case of cross en-
tropy, lq2 with the narrow range quantized to 0 is better.
Therefore, the range quantized to 0 in the quantization for

better performance may depend on the loss function. Be-
sides, there are some cases where the optimal quantization
shows worse performances than the proposed 3 quantiza-
tion functions. This suggests that indexes other than the
quantization error are necessary to optimize the quantiza-
tion of gradients in squared hinge loss.

6. Conclusion

In this paper, we consider the quantization function
which realizes appropriate quantization of gradients in
QNN. We show that lq3 is appropriate if the loss function
is cross entropy, and lq2 is if it is squared hinge. We found
that in both cases the function that can quantize to 0 is high
performance. Future works include detailed search of the
range quantized to 0, investigation of the contribution of the
quantization error to the performance in the squared hinge
loss, and search for the optimal quantization in different
parameters.

References

[1] D. Amodei, et al., “Deep speech 2 : end-to-
end speech recognition in English and Mandarin,”
Proc. Machine Learning Research, vol.48, pp.173–
182, New York, USA, June, 2016.

[2] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A.
Oliva, “Learning deep features for scene recognition
using places database,” Advances in Neural Informa-
tion Processing Systems 27 (NIPS 2014), Montreal,
Canada, Dec., 2014.

[3] Q. V. Le and M. Schuster, “Research Blog: A
Neural Network for Machine Translation, at Pro-
duction Scale,” Google Inc., https://research.
googleblog.com/2016/09/a-neural-network-

for-machine.html, Sept., 2016.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Resid-- 570 -

0

5

10

15

20

25

1E-13

1E-11

1E-09

1E-07

1E-05

1E-03

4bit 5bit 6bit 4bit 5bit 6bit 4bit 5bit 6bit 4bit 5bit 6bit

lq1 lq2 lq3 Optimal

C
la

s
s
if
ic

a
ti
o
n

e
rr

o
r

ra
te

 (
%

)

C
ro

s
s
 e

n
tr

o
p
y

Q
u
a
n
ti
z
a
ti
o
n
 e

rr
o
r Quantization error (1st hidden layer)

Quantization error (2nd hidden layer)

Quantization error (3rd hidden layer)

Final classification error rate

0

5

10

15

20

25

1E-14

1E-12

1E-10

1E-08

1E-06

1E-04

4bit 5bit 6bit 4bit 5bit 6bit 4bit 5bit 6bit 4bit 5bit 6bit

lq1 lq2 lq3 Optimal

C
la

s
s
if
ic

a
ti
o
n

e
rr

o
r

ra
te

 (
%

)

S
q

u
a

re
d
 h

in
g

e

Q
u
a
n
ti
z
a
ti
o
n
 e

rr
o
r

Quantization methods and number of bits for quantization

Figure 2: Experimental results

ual Learning for Image Recognition,” ArXiv e-prints
1512.03385, Dec., 2015.

[5] S. Han, H. Mao, and W. J. Dally, “Deep compres-
sion: compressing deep neural networks with prun-
ing, trained quantization and Huffman coding,” ArXiv
e-prints 1510.00149, Oct., 2015.

[6] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv,
and Y. Bengio, “Quantized neural networks: training
neural networks with low precision weights and acti-
vations,” ArXiv e-prints 1609.07061, Sept., 2016.

[7] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv,
and Y. Bengio, “Binarized neural networks: train-
ing deep neural networks with weights and activations
constrained to +1 or −1,” ArXiv e-prints 1602.02830,
Feb., 2016.

[8] Y. Bengio, “Estimating or propagating gradients
through stochastic neurons,” Technical Report, Uni-
versity of Montreal, ArXiv e-prints 1305.2982, May,
2013.

[9] S. Hochreiter and J. Schmidhuber, “Long short term
memory,” Technical Report FKI-207-95, Technische
Universität München, Aug., 1995.

[10] S. Hochreiter and J. Schmidhuber, “Long short term
memory,” Neural Computation, vol.9, no.8, pp.1735–
1780, Dec., 1997. DOI:10.1162/neco.1997.9.8.1735

[11] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, “Empiri-
cal evaluation of gated recurrent neural networks on
sequence modeling,” ArXiv e-prints 1412.3555, Dec.,
2014.

[12] Daisuke Miyashita, Edward H Lee, and Boris Mur-
mann, “Convolutional neural networks using logarith-
mic data representation,” ArXiv e-prints 1603.01025,
Mar., 2016.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recog-
nition,” Proc. IEEE, vol.86, no.11, pp.2278–2324,
Nov., 1998.

[14] D. Arthur and S. Vassilvitskii, “K-means++: the
advantages of careful seeding,” Proc. 18th Annual
ACM-SIAM Symposium on Discrete Algorithms,
pp.1027–1035, New Orleans, USA, Jan., 2007.

[15] D. P. Kingma and J. Ba, “Adam: a method for
stochastic optimization,” International Conference on
Learning Representations, San Diego, USA, May,
2015.

[16] S. Ioffe and C. Szegedy, “Batch normalization: accel-
erating deep network training by reducing internal co-
variate shift,” Proc. 32nd International Conference on
Machine Learning, vol.37, pp.448–456, Lille, France,
Jul., 2015.

[17] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov, “Dropout: a simple way to pre-
vent neural network from overfitting,” Journal of Ma-
chine Learning Research, vol.15, no.1, pp.1929-1958,
Jan., 2014.

- 571 -

