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Abstract—The lifting scheme is an efficient and flexible
method for the construction of linear and nonlinear wave-
let transforms. In the nonlinear lifting scheme, it is diffi-
cult to design the optimal update filter corresponding to the
nonlinear prediction filter. It is well-known that the combi-
nation use of linear filter and nonlinear filter is an efficient
filter pair. In this paper, we propose a novel lifting-based
lossless image coding method using discrete-time cellular
neural networks (DT-CNNs). In our method, the image is
interpolated by using the nonlinear interpolative dynamics
of DT-CNNs, and the linear 5-tap filter is used for avoiding
the aliasing. Since the output function of DT-CNNs works
as a multi-level quantizing function, our method composes
the integer lifting scheme for lossless image coding. More-
over, our method makes good use of the nonlinear inter-
polative dynamics by A-template compared with conven-
tional CNN image coding methods using only B-template.
The experimental results show a better coding performance
compared with the conventional lifting methods.

1. Introduction

The lifting scheme [1],[2] is a general framework for
constructing biorthogonal wavelets, and it has been recog-
nized that nonlinear extensions are possible [3]. The main
features of the lifting scheme are that it provides entirely
the spatial domain interpolation of the transform and it can
be extended into the hierarchical structure easily. Since it
also provides reversible wavelet transforms for lossless im-
age and signal compression, it has been applied to many
applications such as remote sensing and medical imaging.
The performance of the lifting method depends on the abil-
ity of the filters to interpolate images. In the conventional
lossless image coding using the lifting method, the degra-
dations are caused by the use of the integer wavelet trans-
form instead of the discrete wavelet transform [4]. For effi-
cient interpolations, the quantization noises propagated by
the rounding operations should be considered.

Discrete-time cellular neural networks (DT-CNNs) [5]
have been applied to many applications such as image com-

pression, filtering, and pattern recognition [6]–[8]. The
nonlinear interpolative dynamics by feedback A-template
is one of the significant characteristics of CNN. However,
in some cases, because the model works as a linear filter,
the interpolative dynamics of DT-CNN is not used effec-
tively. In [6], the nonlinear interpolative dynamics by feed-
back A-template of DT-CNN was used for image compres-
sion and the image interpolation corresponded to the opti-
mization problem minimizing the Lyapunov energy func-
tion. In other words, the DT-CNN is a solver to solve the
optimal problem to minimize the Lyapunov energy func-
tion.

In our previous work [8], we proposed the effective
implementation of nonlinear lifting scheme by using DT-
CNNs. Though this method had a good lossless coding
performance, since the prediction filter was a spatial IIR
filter by the nonlinear interpolative dynamics of DT-CNN,
it was difficult to design the optimal spatial FIR update fil-
ter by DT-CNN. In this paper, we propose a novel lossless
image coding method based on lifting scheme using DT-
CNNs. In our method, the image is interpolated by using
the nonlinear interpolative effect by feedback A-template,
and the aliasing is avoided by using Le Gall 5-tap update
filter. Since the output function of DT-CNNs works as a
multi-level quantizing function, our method composes the
integer lifting scheme for lossless image coding.

The experimental results show that our method intro-
duced DT-CNN based lifting scheme has a good lossless
coding efficiency.

2. Discrete-Time Cellular Neural Network
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Figure 1: Discrete-time cellular neural network.
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Fig. 1 shows the block diagram of the DT-CNN. The
state equation of DT-CNN is described in matrix form as

xn+1 = Af(xn) + Bu + T, (1)

yn+1 = f(xn+1), (2)

where u is the input matrix, x is the state variable, f() is
the multi-level quantizing function, and T is the constant
matrix. A and B are feed-back and feed-forward template
matrices respectively. The Lyapunov energy function of
DT-CNN [6] is defined by

Et = −1
2

yt(A − δI)y − ytBu − Tty, (3)

where δ is the positive constant value to determine the
quantizing region such that x = ±δ for f(x) = ±1. It
is proved that the Lyapunov energy function becomes a
monotonically decreasing function, if the A matrix is sym-
metric and the diagonal elements are larger than zero [6].

In order to obtain the high quality image, it is necessary
that image can be reconstructed considering the distortion.
Let G be a Gaussian filter, the distortion function is defined
by

dist(y, u) =
∥∥∥∥∥1

2
yt(Gy − u)

∥∥∥∥∥ . (4)

It means that the difference between the interpolative pre-
dict image and the input image should be small. By the
comparison between (3) and (4), the A and B templates
and the parameter T of interpolative DT-CNN can be de-
termined.

3. Lifting-Based Image Coding Scheme using DT-CNN
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Figure 2: Proposed lossless image coding system : (a) en-
coder, (b) decoder.

Fig. 2 shows the block diagrams of our proposed sys-
tem. At the split stage, the original image u1 is divided into
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Figure 3: Split step of the lifting scheme: the input im-
age is divided into two polyphase components. (a) Vertical
subsampling, (b) Horizontal subsampling.

even polyphase components ue1 and odd polyphase com-
ponents uo1 such like Fig. 3. The prediction for each uon

is designed by using the two-layered DT-CNN. In the first
layer DT-CNN, the distortion function is minimized, and
the compressed image for reconstruction can be obtained
by the nonlinear interpolative effect of A-template. In the
second layer DT-CNN, the interpolated image is obtained
by DT-CNN filtering using B-template. Then the predic-
tion residual en is transmitted to the decoder. The update
for each uen is designed by using the Le Gall linear 5-tap
filter. Then we obtain the updated image cn which is the
input of the next stage. In the encoder, these lifting pro-
cesses using the hybrid filters are applied iteratively. In the
decoder, the same lifting rules are applied, and the recon-
struction image is gradually improved.

3.1. Image interpolation using two-layered DT-CNN

The subsampled even polyphase images such like Fig. 3
are interpolated using the two-layered DT-CNN. By the
comparison between (3) and (4), the templates and the pa-
rameters of the first layer DT-CNN are determined as

A =A(i, j; k, l), C(k, l) ∈ Nr(i, j) (5)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(1 + λ)

if k = i and l = j,

− 1
2πσ2

exp

(
−{(k − i)2 + (l − j)2}d2

m

2σ2

)

otherwise,

B =B(i, j; k, l), C(k, l) ∈ Nr(i, j) (6)

=

{
1 if k = i and l = j ,
0 otherwise,

T = 0, (7)

where Nr(i, j) is the r-neighborhood of cell C(i, j) as
Nr(i, j) = {C(k, l)|max{|k − i|, |l − j|} ≤ r}, σ is the standard
derivative of the Gaussian function, λ is a regularization pa-
rameter, and dm is a sampling interval. Then, we can recall
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the dynamics of the DT-CNN using the above parameters
as follows;

xi j(t + 1) =
∑

C(k,l)∈Nr (i, j)

A(i, j; k, l)ykl(t) + ui j, (8)

yi j(t + 1) = f (xi j(t + 1)), (9)

where xi j(t), yi j(t), and ui j indicate the internal state, the
output of the cell, and the input of the cell C(i, j), respec-
tively. The output function f () corresponds to the rounding
operation for the integer lifting scheme. It plays an impor-
tant role that the interpolation is optimized considering the
nonlinearity caused by the quantization. At the equilibrium
state of the first layer DT-CNN, ye

i j becomes the output and
the quantized state variable image is represented by

x±1.5
1 = −Af±1

1
δ

(x±1.5
1 ) + u±1

1 , (10)

where the subscript and superscript in a variable v±b
a mean

“a” is the value of slope and “b” is the value of satura-
tion value of the quantization function, respectively. It is
very important that the state variable x±1.5

1 (i, j) ∈ x±1.5
1 ,

which is determined based on minimization of Lyapunov
energy function to give an optimized interpolative predict
function, is a high quality lossy interpolative DPCM image
between the original input u±1

1 (i, j) ∈ u±1
1 and the predict

value ũ±1
1
δ

(i, j) ∈ Af±1
1
δ

(x). As shown in Fig. 4, the slope 1
δ

of the quantizing function f ±1
1
δ

(x±1.5
1 ) is larger than that of

the quantizing function of the input u±1
1 and than that of the

transmitted state variable x±1.5
1 . So the reconstructed image

is generated by

u∗±1
1 = Af1

1
δ

(x±1.5
1 ) + x±1.5

1 − δf1
1
δ

(x±1.5
1 ), (11)

through the transmission of the quantized state variable im-
age x±1.5

1 for
∥∥∥x±1.5

1

∥∥∥ < δ and x±1.5
1 = 1 for

∥∥∥x±1.5
1

∥∥∥ ≥ δ. The
range of the state variable x should be −δ ≤ x ≤ +δ to re-
alize lossless encoding and decoding. If the δ is lager, the
state variable x would be in the range but the quantization
function f () has high sensitivity. The high sensitivity of the
quantization function f () causes falling in local minimum
state. The first layer DT-CNN is adopted to obtain the op-
timal range of the state variable.

The output of the first layer DT-CNN becomes the in-
put of the second layer DT-CNN which has no dynamics,
and the output of the second layer DT-CNN provides the
predicted value of the odd polyphase image. Using the out-
put ye

i j at the equilibrium state of the first layer CNN, the
interpolated pixel ŷi j is obtained by

ŷi j =
∑

ykl∈N′(i, j)
B̂(i, j; k, l)ye

i j. (12)

At the odd layer stages, we use the B̂-template which is
obtained by extending the A-template of the first layer DT-
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Figure 4: Slopes of quantization functions.

CNN vertically, that is,

B̂ =B̂(i, j; k, l), C(k, l) ∈ N′(i, j) (13)

=
1

2πσ2
exp

(
− ((k − 0.5)dm − i)2 + (l − j)2

2σ2

)
,

N′(i, j) = {C(k, l)|max{|(k − 0.5)dm − i|, |l − j|} ≤ rdm}.

In the same manner, at the even layer stages, the B̂-template
is obtained by extending the A-template of the first layer
DT-CNN horizontally;

B̂ =B̂(i, j; k, l), C(k, l) ∈ N′(i, j) (14)

=
1

2πσ2
exp

(
− (k − i)2 + ((l − 0.5)dm − j)2

2σ2

)
,

N′(i, j) ={C(k, l)|max{|(k − i|, |(l − 0.5)dm − j|} ≤ rdm}.

3.2. Image Update by Linear Filter

In order to avoid aliasing, we use the Le Gall 5-tap linear
filter for the each update step. The updated image c i j is
obtained by

ci j =

⎧⎪⎪⎨⎪⎪⎩
ue i j + �(ei−1 j + ei j + 2)/4� odd layer stages,

ue i j + �(ei j−1 + ei j + 2)/4� even layer stages,

(15)

where �·� denotes the round-off operator.

4. Experimental Results

We implemented the coder and decoder of our proposed
lossless image coding algorithm based on lifting wave-
let using DT-CNNs. We applied our system to the 8-
bit standard gray-scale test images; “Aerial,” “Barbara,”
“Boat,” “Crowd,” and “Lena.” The size of all the images
is 512 × 512 pixels.

The performance of the proposed method was compared
with the our previous method [8] and the separable 2D lift-
ing method using Le Gall 5-tap/3-tap filters (JPEG 2000)
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indicated as “5/3 tap” in Table 2 and Table 3. For the sim-
ulation, the coding factor is decided experimentally; the
number of lifting layers L = 4, the r−neighborhood of cell
r = 2, the regularization parameter λ = −1. Moreover, the
standard deviation of Gaussian σ is decided as Table 1.

Table 2 shows the the energy of the difference images for
the each layer. As shown in Table 2, our proposed method
has a better prediction performance comparing with the
conventional lifting methods.

Table 3 shows the coding performance for the proposed
method. The proposed method consistently outperforms
the conventional lifting methods.

Table 1: σ of Gaussian function.
Aerial Barbara Boat Crowd Lena

0.575 0.565 0.572 0.600 0.600

Table 2: Energy of the difference images for the each layer.

Image Method 1st Layer 2nd Layer 3rd Layer 4th Layer

Proposed 151.0 553.2 1018.7 1309.4

Aerial Previous 152.9 603.0 1192.3 1634.4

5/3 161.0 605.6 1173.9 1496.9

Proposed 201.9 378.4 323.8 592.9

Barbara Previous 199.5 491.7 501.8 852.8

5/3 201.3 412.2 404.5 704.3

Proposed 67.9 218.4 432.3 632.0

Boat Previous 69.0 243.3 529.2 895.0

5/3 73.0 239.2 499.8 684.6

Proposed 39.8 207.9 537.1 992.3

Crowd Previous 40.4 223.7 606.4 1218.7

5/3 46.2 236.6 660.6 1164.4

Proposed 25.9 103.7 258.8 466.7

Lena Previous 26.4 113.0 308.3 578.3

5/3 29.6 125.2 333.6 585.4

Table 3: Comparison of coding performance in terms of
lossless rates (bits/pixel).

Image Aerial Barbara Boat Crowd Lena

Proposed 5.50 5.22 5.02 4.56 4.38
Previous 5.55 5.30 5.08 4.59 4.44

5/3 5.55 5.32 5.07 4.65 4.44

5. Conclusion

The lifting-based lossless image coding method using
DT-CNN has been proposed. In our method, the dynam-
ics of the DT-CNN is exploited to obtain the optimal pre-
diction considering the nonlinear quantization error. The
experimental results show that our proposed method has
a better coding performance which is compared with con-
ventional lifting methods. In future, we will design and
implement hardware to realize the proposed lossless image
coding system in order to accelerate the processing time of
the conversion of DT-CNN.
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