Finding the Shortest Path by Using an Excitable Digital Reaction-Diffusion System

Koichi Ito[†], Masahiko Hiratsuka[‡], Takafumi Aoki[†], and Tatsuo Higuchi[§]

†Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan ‡Sendai National College of Technology, Sendai 989-3128, Japan §Faculty of Engineering, Tohoku Institute of Technology, Sendai 982-8577, Japan Email: ito@aoki.ecei.tohoku.ac.jp, hiratuka@aoki.ecei.tohoku.ac.jp

Abstract—This paper presents a shortest path search algorithm using a model of excitable reaction-diffusion dynamics. In our previous work, we have proposed a framework of Digital Reaction-Diffusion System (DRDS) — a model of a discrete-time discrete-space reaction-diffusion system useful for nonlinear signal processing tasks. In this paper, we design a special DRDS, called an "excitable DRDS," which emulates excitable reaction-diffusion dynamics and produces traveling waves. We also demonstrate an application of the excitable DRDS to the shortest path search problem defined on two-dimensional (2-D) space with arbitrary boundary conditions.

1 Introduction

Living organisms can create a remarkable variety of structures to realize intelligent functions. In embryology, the development of patterns and forms is sometimes called *Morphogenesis*. In 1952, Alan Turing suggested that a system of chemical substances, called *morphogens*, reacting together and diffusing through a tissue, is adequate to account for the main phenomena of morphogenesis [1]. Recently, model-based studies of morphogenesis employing computer simulations have begun to attract much attention in mathematical biology [2],[3].

From an engineering viewpoint, the insights into morphogenesis provide important concepts for devising a new class of intelligent signal processing functions inspired by biological pattern formation phenomena [4],[5]. From this viewpoint, we have proposed a framework of Digital Reaction-Diffusion System (DRDS)—a discrete-time discrete-space reaction-diffusion dynamical system—for designing signal processing models exhibiting active pattern/texture formation capability. In our previous papers [6],[7], some applications of DRDS to biological texture generation and fingerprint image enhancement/restoration have already been discussed.

The DRDS can simulate a variety of reactiondiffusion dynamics by changing its nonlinear reaction kinetics. This paper describes the design of an *excitable* DRDS based on FitzHugh-Nagumo-type dynamics [2]; the designed DRDS creates excitable traveling waves exhibiting the following characteristics: (i) the waves propagate with a constant velocity, and (ii) they vanish in collisions with other waves without any other interaction. These features suggest a unique algorithm for the shortest path search problem as described in Ref. [8], where the optimal pathways were determined by the collection of time-lapse position information on actual chemical waves propagating through two-dimensional (2-D) mazes prepared with the Belousov-Zhabotinsky (BZ) reaction.

So far, there are some papers discussing the mechanism of finding the collision-free shortest path in a 2-D map using excitable reaction-diffusion dynamics. In the papers [8]-[13], the real chemical reaction, called BZ reaction, is employed as an excitable medium to generate traveling waves for path finding. The use of real chemical media for performing practical computing tasks has the weakness of limited stability in its operation. Also, the size and complexity of maps that can be handled in chemical computers may be limited. The other related papers basically employ continuoustime models of excitable dynamics, including partial differential equation models [8],[14] and circuit models [11],[15]. All these works focus on the mechanism of generating equidistant surfaces for the given map by using excitable chemical waves and describes only simple examples of small maps.

The goal of this paper is to propose a concrete algorithm for shortest path search in 2-D space using the excitable DRDS, including the process of tracing back the equidistant surfaces. The proposed algorithm is based on the discrete-time discrete-space model of DRDS, which is easily implemented in digital computers, and can be applied to arbitrary maps of practical size and complexity.

2 Excitable Digital Reaction-Diffusion System

A Digital Reaction-Diffusion System (DRDS) — a model of a discrete-time discrete-space reaction-diffusion dynamical system — can be naturally derived from the original reaction-diffusion system defined in continuous space and time (see [6] for basic mathematical discussions).

DRDS can simulate various reaction-diffusion dynamics by changing its nonlinear reaction kinetics and parameters. In this paper, we use the FitzHugh-Nagumo (FHN) model, which is one of the most widely studied excitable models [2]. The two-morphogen FHN-based DRDS, called the *excitable* DRDS, is de-

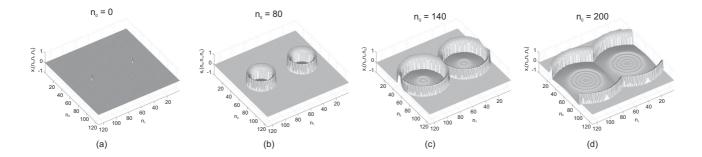


Figure 1: Wave propagation in the 2-D excitable DRDS: (a) initial condition, (b)–(d) snapshots of wave propagation.

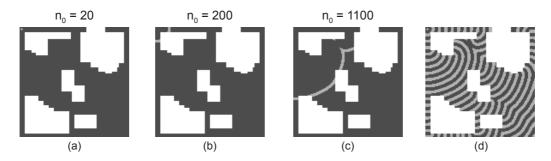


Figure 2: Wave propagation in the 2-D excitable DRDS, with obstacles appearing as white parts: (a)–(c) the snapshots of wave propagation in $x_1(n_0, n_1, n_2)$, (d) superposition of traveling waves in $x_1(n_0, n_1, n_2)$ taken every 100 steps.

fined as follows:

$$\begin{bmatrix} x_{1}(n_{0}+1, n_{1}, n_{2}) \\ x_{2}(n_{0}+1, n_{1}, n_{2}) \end{bmatrix} = \begin{bmatrix} x_{1}(n_{0}, n_{1}, n_{2}) \\ x_{2}(n_{0}, n_{1}, n_{2}) \end{bmatrix}$$

$$+ \begin{bmatrix} R_{1}(x_{1}(n_{0}, n_{1}, n_{2}), x_{2}(n_{0}, n_{1}, n_{2})) \\ R_{2}(x_{1}(n_{0}, n_{1}, n_{2}), x_{2}(n_{0}, n_{1}, n_{2})) \end{bmatrix}$$

$$+ \begin{bmatrix} D_{1}(l * x_{1})(n_{0}, n_{1}, n_{2}) \\ D_{2}(l * x_{2})(n_{0}, n_{1}, n_{2}) \end{bmatrix},$$

$$(1)$$

where n_0 is a time index, n_1 and n_2 are spatial indices, x_1 and x_2 are the concentrations of the morphogens, and D_1 and D_2 are the diffusion coefficients of morphogens x_1 and x_2 , respectively. Here R_1 and R_2 are the nonlinear reaction kinetics for morphogens x_1 and x_2 , respectively, and are given by

$$\begin{split} R_1(x_1,x_2) &= T_0 \left\{ \frac{1}{k_1} \{x_1 \{x_1 - k_2\} \{1 - x_1\} - x_2\} \right\}, \\ R_2(x_1,x_2) &= T_0 \left\{ x_1 - k_3 x_2 \right\}, \end{split}$$

where T_0 is a time sampling interval. The operator \ast in Eq. (1) denotes the spatial convolution, and

$$l(n_1, n_2) = \begin{cases} \frac{1}{T_1^2} & (n_1, n_2) = (-1, 0), (1, 0) \\ \frac{1}{T_2^2} & (n_1, n_2) = (0, -1), (0, 1) \\ -2(\frac{1}{T_1^2} + \frac{1}{T_2^2}) & (n_1, n_2) = (0, 0) \\ 0 & \text{otherwise,} \end{cases}$$

where T_1 and T_2 are space sampling intervals. In this paper, we employ the parameter set: $k_1=10^{-3}$, $k_2=10^{-6}$, $k_3=0.1$, $D_1=40$, $D_2=0$, $T_0=10^{-3}$, and $T_1=T_2=1$.

The excitable DRDS exhibits the characteristic behavior of excitable dynamics and generates traveling waves depending on the initial condition. Assume that the initial condition is given by $x_1(0,n_1,n_2)=x_2(0,n_1,n_2)=0$ except for the starting point (n_1^S,n_2^S) . When we give a stimulus above the threshold (~ 0.9 for the above parameter set) at the starting point, for example, $x_1(0,n_1^S,n_2^S)=0.9$, a traveling wave is initiated from the starting point and propagates with a constant velocity as the time step n_0 increases.

Consider an excitable DRDS of size 128×128 , where n_1 and n_2 are defined as $0 \le n_1 \le 127$, $0 \le n_2 \le 127$. Figure 1 shows the wave propagation observed in the snapshots of the first morphogen $x_1(n_0, n_1, n_2)$. In this example, we first give initial stimuli as $x_1(0, 32, 64) = x_1(0, 96, 64) = 0.9$ (Fig. 1 (a)). The traveling waves spread in a circular pattern and vanish in collisions with another wave as shown in Figs. 1 (b)–(d).

In the above example, we can observe two important characteristics of excitable waves: (i) the waves propagate with a constant velocity and (ii) they vanish in collisions with other waves. These features suggest a unique algorithm for the shortest path search problem as described in Ref. [8], where snapshots of real propagating chemical waves are considered as a collection

```
procedure Forward Operation
   Input
     a starting point (n_1^S, n_2^S), a goal (n_1^G, n_2^G),
     a map (with obstacle information);
   Output
     \widetilde{W}(n_0): a list of points (n_1, n_2) in 2-D space at which
                the value of x_1(n_0, n_1, n_2) is higher than a specific
                threshold value 0.9 (that is, W(n_0) stores the list
                of points at which the traveling wave exists),
     n_0^G: the time step when the traveling wave arrives at
            the goal (n_1^G, n_2^G);
begin
  n_0 \leftarrow 0; { Initialize the time step }
  x_1(0, n_1, n_2) \leftarrow 0 for all the points (n_1, n_2);
  x_2(0, n_1, n_2) \leftarrow 0 for all the points (n_1, n_2); x_1(0, n_1^S, n_2^S) \leftarrow a constant (> 0.9);
  W(0) \leftarrow \{(n_1^S, n_2^S)\};
  repeat
     Compute the excitable DRDS (Eq. (1)) for one step
       assuming the boundary condition defined by the map,
       and derive x_1(n_0 + 1, n_1, n_2) and x_2(n_0 + 1, n_1, n_2);
     Store the points of the wavefronts into W(n_0+1)
       (that is, the points at which the value of x_1(n_0+1, n_1, n_2)
       is higher than the threshold value 0.9);
     n_0 \leftarrow n_0 + 1
  until the traveling wave arrives at (n_1^G, n_2^G);
n_0^G \leftarrow n_0 end.
```

Figure 3: Algorithm for Forward Operation.

of equidistant surfaces and are useful for finding the shortest path from the starting point to any specified point in 2-D space.

3 Shortest Path Search Algorithm

This section proposes a shortest path search algorithm using the excitable DRDS designed in the above section. The proposed algorithm employs the excitable DRDS for wavefront generation and performs the traceback of traveling wavefronts to find the shortest paths.

Figures 2 (a)–(c) show the wave propagation in a 2-D excitable DRDS of the size 128×128 pixels. Note that we employ the boundary condition defined by obstacles in a map (specifying collision-free space and blocked space), where we set fixed concentrations $x_1 = 0$ and $x_2 = 0$ for obstacle locations. In Fig. 2 (d), 29 snapshots of wavefronts of the first morphogen x_1 are superimposed at every 100-step intervals to form a composite image. Each wavefront represents a set of equidistant locations measured from the starting point, and hence we can derive the shortest path by tracing back the history of wavefront position from the goal to the starting point.

The proposed algorithm consists of two operations: Forward Operation and Backward Operation. Forward Operation is to generate a traveling wave in the excitable DRDS and record snapshots of equidistant wavefronts with specific time intervals. Backward Operation, on the other hand, is to trace back the wavefronts from the goal to the starting point to find the

```
procedure Backward Operation
   Input (n_1^S, n_2^S), (n_1^G, n_2^G), W(n_0), n_0^G, \Delta: a resolution of the time step interval for Backward
          Operation (\Delta = 4 in our experiments);
   Output
     Paths: a list of points (with their time index) on the
                shortest path from (n_0^G, n_1^G, n_2^G) to (0, n_1^S, n_2^S);
   \widetilde{S}earch \leftarrow <(n_0^G, n_1^G, n_2^G)>;
  Paths \leftarrow BackTrace(Search)
function BackTrace(Search)
begin
  (n_0^b, n_1^b, n_2^b) \leftarrow \text{the last element of } Search;
  if n_0^b - \Delta \leq 0 then
     Search \leftarrow append\{Search, < (0, n_1^S, n_2^S) > \};
     {\bf return}\ Search
   _{
m else}
        \tilde{C} \leftarrow \text{get the points in } W(n_0^b - \Delta) \text{ that have the}
                shortest distance from (n_1^b, n_2^b);
        C \leftarrow BranchDetection(C);
        Search \leftarrow
           \bigcup \textit{BackTrace}(\texttt{append}\{Search, <(n_0^b-\Delta, n_1^c, n_2^c)>\});
      (n_1^c, n_2^c) \in C
        return Search
     end
\mathbf{function} \ \mathit{BranchDetection}(C)
begin
          get the points in W(n_0^b - 2\Delta) that have the shortest
           distance from each point in C (see Fig. 5);
   Calculate the distance between the two(or more) points in C';
  if the calculated distance is less than \Delta then
      Replace the points in C with their middle position;
  return C
end.
```

Figure 4: Algorithm for Backward Operation.

shortest pathways. We can obtain the shortest path by connecting every pair of two points on the adjacent equidistant wavefronts with the shortest distance. Figures 3 and 4 show the detailed algorithms for the Forward and Backward Operations, respectively.

4 Experiments

This section presents some experiments of shortest path search using the proposed algorithm. The traveling wave initiated from the starting point (n_1^S, n_2^S) propagates in the Forward Operation. The shortest path from the starting point to the goal is obtained in the Backward Operation.

Figure 6 shows the experimental result on the map with symmetric obstacles. In this experiment, we obtain two shortest paths, since obstacles are symmetric to the line between the starting point and the goal. By using the proposed algorithm, we can obtain exactly two shortest paths which have equal distances.

Figure 7 shows a typical example of shortest path search in a maze, where five different goals are specified in advance. We can obtain all the paths for each

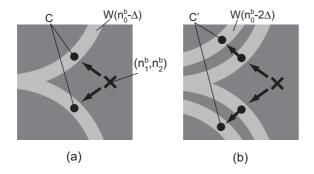


Figure 5: Branch detection. There is a possibility that the shortest path has multiple branches at time $n_0^b - \Delta$ (a). To verify whether the points in C are true branches or not, the BranchDetection procedure further traces the wavefront backward to the time step $n_0^b - 2\Delta$ (b).

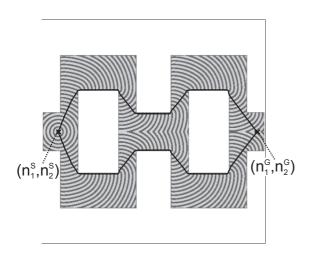


Figure 6: Shortest path search on the map with symmetric obstacles.

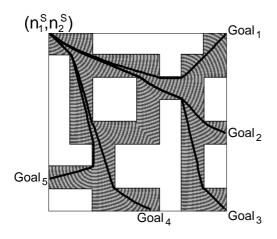


Figure 7: Shortest path search in a maze.

specified goal.

In the above experiments, we can observe that all the obtained paths from the starting point to the goal are shortest in terms of Euclidean distance.

5 Conclusion

This paper presents a shortest path search algorithm in 2-D space using the excitable Digital Reaction-Diffusion System (DRDS). The proposed algorithm could be applied to various navigation tasks defined in 2-D space, and could also be extended to shortest path search algorithms for higher-dimensional space.

References

- A. M. Turing, "The chemical basis of morphogenesis," Phil. Trans. Roy. Soc. London, vol. B237, pp.37-72, Aug. 1952.
- [2] J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1993.
- [3] S. Kondo and R. Asai, "A reaction-diffusion wave on the skin of the marine angelfish pomacanthus," *Nature*, vol. 376, pp. 765–768, Aug. 1995.
- [4] A. S. Sherstinsky and R. W. Picard, "M-lattice: from morphogenesis to image processing," *IEEE Trans. Image Processing*, vol.5, no.7, pp.1137-1150, July 1996.
- [5] K. R. Crounse and L. O. Chua, "Methods for image processing and pattern formation in cellular neural networks: a tutorial," *IEEE Trans. Circuits Syst.-I*, vol.42, no.10, pp.583-601, Oct. 1995.
- [6] K. Ito, T. Aoki, and T. Higuchi, "Digital reaction-diffusion system — a foundation of bio-inspired texture image processing —," *IEICE Trans. Fundamentals*, vol.E84-A, no.8, pp.1909–1918, Aug. 2001.
- [7] K. Ito, T. Aoki, and T. Higuchi, "Fingerprint restoration using digital reaction-diffusion system and its evaluation," *IEICE Trans. Fundamentals*, vol.E86-A, no.8, pp.1916– 1924, Aug. 2003.
- [8] O. Steinbock, A. Tóth, and K. Showalter, "Navigating complex labyrinths: optimal paths from chemical waves," *Science*, vol.267, pp.868–871, Feb. 1995.
- [9] A. Adamatzky, B. De Lacy Costello, C. Melhuish, and N. Ratcliffe, "Experimental reaction-diffusion chemical processors for robot path planning," J. Intell. Robot. Syst., vol.37, no.3, pp.233–249, July 2003.
- [10] A. Adamatzky and B. De Lacy Costello, "Reaction-diffusion path planning in a hybrid chemical and cellular-automaton processor," Chaos, Solitons and Fractals, vol.16, no.5, pp.727-736, June 2003.
- [11] A. Adamatzky, P. Arena, A. Basile, R. Carmona-Galán, B. De Lacy Costello, L. Fortuna, M. Frasca, and A. Rodríguez-Vázquez, "Reaction-diffusion navigation robot control: from chemical to VLSI analogic processors," *IEEE Trans. Circuits Syst.-I*, vol.51, no.5, pp.926–938, May 2004.
- [12] A. Adamatzky, "Computing with waves in chemical media: massively parallel reaction-diffusion processors," *IEICE Trans. Electron.*, vol.E87-C, no.11, pp.1748-1756, Nov. 2004.
- [13] N. G. Rambidi and D. Yakovenchuk, "Finding paths in a labyrinth based on reaction-diffusion media," Adv. Mater. Opt. Electron., vol.9, pp.27-34, 1999.
- [14] K. Agladze, N. Magome, R. Aliev, T. Yamaguchi, and K. Yoshikawa, "Finding the optimal path with the aid of chemical wave," *Physica D*, vol.106, pp.247–254, 1997.
- [15] V. Pérez-Muñuzuri, V. Pérez-Villar, and L. O. Chua, "Autowaves for image processing on a two-dimensional CN-N array of excitable nonlinear circuits: flat and wrinkled labyrinths," *IEEE Trans. Circuits Syst.-I*, vol.40, no.3, pp.174-181, March 1993.