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Abstract—This paper presents a shortest path any other interaction. These features suggest a u-

search algorithm using a model of excitable reaction-
diffusion dynamics. In our previous work, we have pro-
posed a framework of Digital Reaction-Diffusion Sys-
tem (DRDS) — a model of a discrete-time discrete-
space reaction-diffusion system useful for nonlinear
signal processing tasks. In this paper, we design a
special DRDS, called an “excitable DRDS,” which em-
ulates excitable reaction-diffusion dynamics and pro-
duces traveling waves. We also demonstrate an ap-
plication of the excitable DRDS to the shortest path
search problem defined on two-dimensional (2-D) s-
pace with arbitrary boundary conditions.

1 Introduction

Living organisms can create a remarkable variety
of structures to realize intelligent functions. In em-
bryology, the development of patterns and forms is
sometimes called Morphogenesis. In 1952, Alan Turing
suggested that a system of chemical substances, called
morphogens, reacting together and diffusing through a
tissue, is adequate to account for the main phenome-
na of morphogenesis [1]. Recently, model-based stud-
ies of morphogenesis employing computer simulations
have begun to attract much attention in mathematical
biology [2],[3]-

From an engineering viewpoint, the insights into
morphogenesis provide important concepts for devis-
ing a new class of intelligent signal processing function-
s inspired by biological pattern formation phenomena
[4],[5]- From this viewpoint, we have proposed a frame-
work of Digital Reaction-Diffusion System (DRDS)
— a discrete-time discrete-space reaction-diffusion dy-
namical system — for designing signal processing mod-
els exhibiting active pattern/texture formation capa-
bility. In our previous papers [6],[7], some application-
s of DRDS to biological texture generation and fin-
gerprint image enhancement /restoration have already
been discussed.

The DRDS can simulate a variety of reaction-
diffusion dynamics by changing its nonlinear reaction
kinetics. This paper describes the design of an ez-
citable DRDS based on FitzHugh-Nagumo-type dy-
namics [2]; the designed DRDS creates excitable trav-
eling waves exhibiting the following characteristics: (i)
the waves propagate with a constant velocity, and (i-
i) they vanish in collisions with other waves without

nique algorithm for the shortest path search problem
as described in Ref. [8], where the optimal pathways
were determined by the collection of time-lapse posi-
tion information on actual chemical waves propagating
through two-dimensional (2-D) mazes prepared with
the Belousov-Zhabotinsky (BZ) reaction.

So far, there are some papers discussing the mecha-
nism of finding the collision-free shortest path in a 2-
D map using excitable reaction-diffusion dynamics. In
the papers [8]-[13], the real chemical reaction, called
BZ reaction, is employed as an excitable medium to
generate traveling waves for path finding. The use of
real chemical media for performing practical comput-
ing tasks has the weakness of limited stability in its
operation. Also, the size and complexity of maps that
can be handled in chemical computers may be limited.
The other related papers basically employ continuous-
time models of excitable dynamics, including partial
differential equation models [8],[14] and circuit mod-
els [11],[15]. All these works focus on the mechanism
of generating equidistant surfaces for the given map
by using excitable chemical waves and describes only
simple examples of small maps.

The goal of this paper is to propose a concrete al-
gorithm for shortest path search in 2-D space using
the excitable DRDS, including the process of tracing
back the equidistant surfaces. The proposed algorithm
is based on the discrete-time discrete-space model of
DRDS, which is easily implemented in digital comput-
ers, and can be applied to arbitrary maps of practical
size and complexity.

2 Excitable Digital Reaction-Diffusion Sys-
tem

A Digital Reaction-Diffusion System (DRDS) —
a model of a discrete-time discrete-space reaction-
diffusion dynamical system — can be naturally derived
from the original reaction-diffusion system defined in
continuous space and time (see [6] for basic mathemat-
ical discussions).

DRDS can simulate various reaction-diffusion dy-
namics by changing its nonlinear reaction kinetics and
parameters. In this paper, we use the FitzHugh-
Nagumo (FHN) model, which is one of the most wide-
ly studied excitable models [2]. The two-morphogen
FHN-based DRDS, called the ezxcitable DRDS, is de-
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Figure 1: Wave propagation in the 2-D excitable DRDS:
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Figure 2: Wave propagation in the 2-D excitable DRDS, with obstacles appearing as white parts: (a)—(c) the
snapshots of wave propagation in z(ng,n1,n2), (d) superposition of traveling waves in z1(ng,n1,n2) taken

every 100 steps.
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where ng is a time index, n; and n, are spatial indices,
x1 and x5 are the concentrations of the morphogens,
and D; and D, are the diffusion coefficients of mor-
phogens x; and x,, respectively. Here R; and R, are
the nonlinear reaction kinetics for morphogens x; and
To, respectively, and are given by
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where Tj is a time sampling interval. The operator
in Eq. (1) denotes the spatial convolution, and

l(ny,ng)
Tllg (n1,n2) = (—1,0),(1,0)
_ T%Q (n1,n2) = (0,-1),(0,1)
2t ) (maima) = (0,0)
0 otherwise,

where 77 and 75 are space sampling intervals. In this
paper, we employ the parameter set: ky = 1072, ky =
1076, ks = 0.10 D, = 40, Dy = 0, T = 1073, and
T, =T, =1.

The excitable DRDS exhibits the characteristic be-
havior of excitable dynamics and generates traveling
waves depending on the initial condition. Assume
that the initial condition is given by x1(0,n1,n2) =
75(0,m1,n2) = 0 except for the starting point (ny,n3).
When we give a stimulus above the threshold (~ 0.9
for the above parameter set) at the starting point, for
example, z1(0,n7,n5) = 0.9, a traveling wave is ini-
tiated from the starting point and propagates with a
constant velocity as the time step ng increases.

Consider an excitable DRDS of size 128 x 128, where
ny and ny are defined as 0 < n; <127, 0 < ny < 127.
Figure 1 shows the wave propagation observed in the
snapshots of the first morphogen x1(ng,n1,n2). In this
example, we first give initial stimuli as x4 (0, 32,64) =
21(0,96,64) = 0.9 (Fig. 1 (a)). The traveling waves
spread in a circular pattern and vanish in collisions
with another wave as shown in Figs. 1 (b)—(d).

In the above example, we can observe two important
characteristics of excitable waves: (i) the waves prop-
agate with a constant velocity and (ii) they vanish in
collisions with other waves. These features suggest a
unique algorithm for the shortest path search problem
as described in Ref. [8], where snapshots of real prop-
agating chemical waves are considered as a collection
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procedure Forward Operation
Input
a starting point (nf,n3), a goal (n{,n§),
a map (with obstacle information);
Output
Wi(no): a list of points (n1,n2) in 2-D space at which
the value of z1(ng, n1,n2) is higher than a specific
threshold value 0.9 (that is, W (ng) stores the list
of points at which the traveling wave exists),
nOGz the time step when the traveling wave arrives at
the goal (n{’, n§);
begin
ng < 0; { Initialize the time step }
21(0, n1,n2) < 0 for all the points (ni,n2);
z2(0, nl,ng) + 0 for all the points (n1,n2);
x1(0, n3 ,n2) + a constant (> 0.9);
W(0) - {(n . n$)):
repeat
Compute the excitable DRDS (Eq. (1)) for one step
assuming the boundary condition defined by the map,
and derive z1(ng + 1,n1,n2) and za(ng + 1,n1,n2);
Store the points of the wavefronts into W (ng-+1)
(that is, the points at which the value of z1(no+1,n1,n2)
is higher than the threshold value 0.9);
ng ¢ ng + 1
until the traveling wave arrives at (n{',n§);
nOG <— no
end.

Figure 3: Algorithm for Forward Operation.

of equidistant surfaces and are useful for finding the
shortest path from the starting point to any specified
point in 2-D space.

3 Shortest Path Search Algorithm

This section proposes a shortest path search algo-
rithm using the excitable DRDS designed in the above
section. The proposed algorithm employs the ex-
citable DRDS for wavefront generation and performs
the traceback of traveling wavefronts to find the short-
est paths.

Figures 2 (a)-(c) show the wave propagation in
a 2-D excitable DRDS of the size 128 x 128 pixels.
Note that we employ the boundary condition defined
by obstacles in a map (specifying collision-free space
and blocked space), where we set fixed concentrations
21 = 0 and x5 = 0 for obstacle locations. In Fig. 2 (d),
29 snapshots of wavefronts of the first morphogen x
are superimposed at every 100-step intervals to form a
composite image. Each wavefront represents a set of e-
quidistant locations measured from the starting point,
and hence we can derive the shortest path by tracing
back the history of wavefront position from the goal
to the starting point.

The proposed algorithm consists of two operations:
Forward Operation and Backward Operation. For-
ward Operation is to generate a traveling wave in the
excitable DRDS and record snapshots of equidistant
wavefronts with specific time intervals. Backward Op-
eration, on the other hand, is to trace back the wave-
fronts from the goal to the starting point to find the

procedure Backward Operation

Input
(n%,n§), (n€,n§), W(no), nd,
A: a resolution of the time step interval for Backward

Operation (A = 4 in our experiments);

Output

Paths: a list of points (with their time index) on the
shortest path from (nOG,n?,n2 ) to (0,n7, n5);

begin
Search +< (n§,n{,n§) >;
Paths < BackTrace(Search)
end.

function BackTrace(Search)
begin

(ng,nli,ng) <« the last element of Search,;

if n§ — A <0 then
Search + append{Search, < (0,n7,n3) >};
return Search
else
begin
C + get the points in W(n0 A) that have the
shortest distance from (n%,n);
C' + BranchDetection(C);
Search +
U BackTrace(append{Search, < (
(n{,ng)EC
return Search
end
end.

— A, nf,n5) >});

function BranchDetection(C')
begin
C’ + get the points in W(no — QA) that have the shortest
distance from each point in C (see Fig. 5);
Calculate the distance between the two(or more) points in C;
if the calculated distance is less than A then
Replace the points in C' with their middle position;
return C

end.

Figure 4: Algorithm for Backward Operation.

shortest pathways. We can obtain the shortest path
by connecting every pair of two points on the adjacen-
t equidistant wavefronts with the shortest distance.
Figures 3 and 4 show the detailed algorithms for the
Forward and Backward Operations, respectively.

4 Experiments

This section presents some experiments of shortest
path search using the proposed algorithm. The trav-
eling wave initiated from the starting point (ny,n5)
propagates in the Forward Operation. The shortest
path from the starting point to the goal is obtained in
the Backward Operation.

Figure 6 shows the experimental result on the map
with symmetric obstacles. In this experiment, we ob-
tain two shortest paths, since obstacles are symmetric
to the line between the starting point and the goal. By
using the proposed algorithm, we can obtain exactly
two shortest paths which have equal distances.

Figure 7 shows a typical example of shortest path
search in a maze, where five different goals are speci-
fied in advance. We can obtain all the paths for each
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Figure 5: Branch detection. There is a possibility
that the shortest path has multiple branches at time
n§—A (a). To verify whether the points in C' are true
branches or not, the BranchDetection procedure fur-

ther traces the wavefront backward to the time step
ng—2A (b).
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Figure 6: Shortest path search on the map with sym-
metric obstacles.
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Figure 7: Shortest path search in a maze.

229

specified goal.

In the above experiments, we can observe that all
the obtained paths from the starting point to the goal
are shortest in terms of Euclidean distance.

5 Conclusion

This paper presents a shortest path search algorith-
m in 2-D space using the excitable Digital Reaction-
Diffusion System (DRDS). The proposed algorithm
could be applied to various navigation tasks defined
in 2-D space, and could also be extended to shortest
path search algorithms for higher-dimensional space.
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