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Abstract—This paper focuses on the stability of passive
dynamic walking. Passive dynamic walking is well known
as efficient and natural walking, so that many researchers
investigate the mechanism to apply it to the locomotion
with natural and effective energy use. The investigation
of the stability on this motion has a potential to lead us to
design more efficient or natural control. In this paper, the
stability of the simplest passive dynamic walking is mainly
discussed based on the global phase structure, considering
the continuous walking state. As a result, the dynamical
feature of passive dynamic walking is clearly understood.

1. Introduction

This paper addresses the stability of passive dynamic
walking. Passive dynamic walking [1] is a mechanism,
through which the biped robot walks down an inclined
plane without active control. Then the energy for walking
is fed by the conversion of gravitational potential energy.
The motion of passive dynamic walking is only governed
by the dynamics of itself, autonomously.

The passive dynamic walking is efficient walking and
has a steady gait [2, 3, 4]. Several biped robots that use
the passive dynamic walking with active torque input are
developed [5, 6], and they actually achieve the locomo-
tion under less energy use even on the level ground. The
stability of compass gait is also discussed [3, 7, 8]. How-
ever, most of the discussions are based on the linearized
local stability and the global dynamics has not been still
confirmed. The detection of the global behavior of passive
dynamic walking leads us to realize more efficient or natu-
ral walking. This paper numerically addresses the outline
about the global stability of passive dynamic walking re-
lated to global stability.

2. Compass gait model

Figure 1 shows a simple 2-D model of a biped robot. The
biped robot does not have any actuator and any controller.
Each leg is knee-less and rigid structure, and is equivalent
to the other leg and is linked with the hip by a friction-
less joint. The leg touching the ground is called stance leg,
and the other leg which can freely swing, swing leg. The
nomenclature of symbols in the figure is presented in Tab.
1. During the swing of legs, the toe of stance leg is assumed
to be fixed. Thus the dynamic equation of the biped robot
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Figure 1: A simple biped robot model.

is obtained:














































































dθ
dt
= θ̇,

dφ
dt
= φ̇,

dθ̇
dt
=

−M11θ̇
2
+ M12φ̇

2
+G1

I1(ml2g2 + I) − {mllg2 cos(θ − φ)}2
,

dφ̇
dt
=

−M21θ̇
2
+ M22φ̇

2
+G2

I1(ml2g2 + I) − {mllg2 cos(θ − φ)}2
,

(1)

where


































































































I1 = mHl2 + m(l − lg2)2
+ ml2 + I,

M11 = m2l2lg2
2 cos (θ − φ) sin (θ − φ),

M12 = mllg2(I + mlg2
2) sin (θ − φ),

M21 = I1mllg2 sin(θ − φ),

M22 = m2l2lg2
2 cos(θ − φ) sin(θ − φ),

G1 = {(mH + 2m)l − mlg2}(I + mlg2
2)g sin θ

−m2llg2
2g cos (θ − φ) sin φ,

G2 = {(mH + 2m)l − mlg2}mllg2g cos (θ − φ) sin θ
−I1mlg2g sin φ.

These equations correspond to those for the double pendu-
lum. There exists no energy loss during the swing of legs,
so that the whole energy is conserved during the swing mo-
tion. When the swing leg touches the ground, a transition
between legs occurs at the end of the step, and the stance
leg simultaneously leaves the ground to take the next step.
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Table 1: Nomenclature.

θ Angle of stance leg with vertical
φ Angle of swing leg with vertical
θ̇ Angular velocity of stance leg
φ̇ Angular velocity of stance leg
γ Angle of an inclined plane with horizontal
mH Mass of the hip
m The lumped mass of each leg
lg2 Length from the hip to the center of leg mass
l Length of each leg
I Inertial moment of each leg
g Acceleration of gravity
R Field of real numbers
(̇) Time derivation

Thus the stance leg and the swing leg ideally exchange each
other at the transition. The condition of the transition is ge-
ometrically expressed as follows:

θ + φ = 2γ. (2)

At the transition, two assumptions are given:

A1) The swing leg and the stance leg exchange each other
instantaneously;

A2) The collision of the biped robot with the inclined
plane is inelastic and nonslip.

Under these assumptions, the angular moment of biped
robot is kept during the collision [9]. It allows us to treat
the collision by the relation of the pre-impact, and the post-
impact angular velocities. The relation is described as fol-
lows:
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, (3)

where superscripts + and − describe the state of post-impact
and pre-impact respectively. Ni j(θ, φ), i, j = 1, 2 are ob-
tained by the conservation law of angular momentum.

In the transition, the energy dissipation also occurs. In
a steady walking, the energy dissipation at the transition is
equal to the energy gained by the decrease of gravitational
potential energy.

3. Numerical simulations

3.1. Steady gaits

Numerical simulations are performed for the biped robot
as shown in Fig. 1. The parameters are set as shown in
Tab. 2. Limit cycles in Eqs. (1) and (3) are shown in Fig.
2. As in [2], there exist two steady gaits. We call the gait
corresponding orbit α by gait S , and orbit β by gait U. The
jumps A and B in the figure correspond to the state jumps
by Eq. (3). The trajectory from A to B shows the trajectory
of stance leg. After the jump B, the trajectory is transposed

to the trajectory of swing leg. As mentioned in previous
section, the energy cost to walk for a distance is same in
both gaits. The characteristics of both gaits are shown in
Tab. 3. Thus, the gait S walks slowly with a long stride.

Table 2: Setting of parameters.

mH 0.7 m 0.15 g 9.8
l 1.0 lg2 0.5 γ −0.01
I 0.0017
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Figure 2: Limit cycles of passive dynamic walking. A and
B indicate the state jump by Eq. (3).

Table 3: Physical characteristics of two gaits.

stride Period of Step Average speed
Gait S 0.339 0.744 0.456
Gait U 0.319 0.652 0.487

3.2. Local stability of steady gaits

It is well known that there exists a stable steady gait in
passive dynamic walking [3, 7, 8]. Let the state space X
be a connected open subset of R4 and the state vector x be
x = [θ φ θ̇ φ̇]T ∈ X. xk is now defined to be the value at the
instance of post-transition on step k. The relation between
the state of the next step xk+1 and xk is then given:

xk+1 = F(xk), (4)

where F denotes the nonlinear function called by step-to-
step map [2]. In the neighborhood of fixed point at the
instance of post-transition x̄, we can linearize the map as
follows:

(xk+1 − x̄) = D(xk − x̄), (5)

where D denotes linearized map in the neighborhood of x̄.
The stability type of x̄ in Eq. (5) is determined by the mag-
nitude of the eigenvalues of D. The asymptotic behavior of
Eq. (4) near x̄ and its stability type are also determined by
the magnitude [10]. The fixed point of the orbit α is given
as x̄α = [0.161 −0.181 −0.711 −0.563]T, the point of the
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orbit β x̄β = [0.150 −0.170 −0.712 −0.613]T. Eigenvalues
of D are −0.50 ± 0.34i, −0.11, 0 at x̄ = x̄α. The eigen-
vector of zero eigenvalue is correspond to the asymptotic
line of Eq. (1) near x̄. Thus x̄α is a stable fixed point and
Gait S implies a stable gait. At x̄ = x̄β, eigenvalues are
−2.11, −0.67, −0.05, 0. Therefore, x̄β is a hyperbolic sad-
dle point, and U becomes an unstable gait.

3.3. The domain of attraction of stable gait

The domain of attraction of the biped robot is governed
by the phase structure. Fig. 3 shows the domain of attrac-
tion of stable orbit α at post-transitional state. The figure
denotes the sectional domain at θ+ = 0.150 which is equiv-
alent to θ+ of x̄β. In this figure, x̄β lies on the boundary of
the domain. Thus, the phase structure of the biped robot is
transpired by the invariant manifold of x̄β. Moreover the
biped robot has constraint related to the ground. In this pa-
per, the constraint is represented by {θ̇ < −φ̇ | θ = θ+, θ−}.
It implies that once the swing leg leaves from the ground, it
is assumed to be controlled ideally. The control allows the
biped robot to walk without stumbles.

Figure 4 shows the phase portrait of Eqs. (1) and (3) in
the neighborhood of x̄β. In the figure, Wu

loc(x̄β) denotes the
local unstable manifold related to the maximum eigenvalue
of D|x̄=x̄β

, and Ws
−0.05(x̄β) the local stable manifold to the

minimum eigenvalue of D|x̄=x̄β
except zero eigenvalue. A

blanch of local unstable manifold Wu
loc(x̄β) is converged to

x̄α, and the local stable manifold W s
−0.05(x̄β) is truncated at

C by the constraint of ground. In the figure, the trajectory
from C to D is based on the constraint of ground, and θ̇
is equal to −φ̇ in the interval. Fig. 4(c) shows the phase
structure on θ − φ̇/θ̇ plane. The influence of the constraint
is clearly observed in the figure. As in Eq. (3), the pre-
impact state is linearly related to post-impact state. The
phase structure is also discussed by Figs. 4(c) and (d). It
implies that the biped robot continues walking when we set
angular velocity of the swing leg φ̇ large, and the kinetic
energy of the biped robot K low at small θ. At large θ,
the domain of attraction becomes larger than the domain at
small θ. Thus, any control of the biped robot is not required
at large θ.

In Fig. 4, the local stable manifold W s
−0.05(x̄β) is trun-

cated by the constraint of ground. Thus, the domain of at-
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Figure 3: Sectional domain of attraction of the stable fixed
point x̄α(θ+ = 0.150).
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Figure 4: Sectional phase portraits in the neighborhood of
x̄β. Trajectory from C to D is based on the constraint of
ground.
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traction may be complex. However, it is out of the scope in
this paper. Figs. 5 and 6 show some trajectory on θ−θ̇ plane
and θ − φ̇. In the figures, each initial state xi, i = 1, · · · , 7
belongs to the local manifolds W s

−0.05(x̄β) and Wu
loc(x̄β), or

the hedge of the domain of attraction which is governed by
the constraint. E s(x̄β) is a stable subspace related to the
eigenvalue of D|x̄=x̄β

. x1 corresponds to C in Fig. 4, and
x3 to D in Fig. 4. x2 belongs to the hedge constraint of
the ground. x4, x5, x6, and x7 are points on the local stable
manifold Ws

−0.05(x̄β). The behavior of each image of map
is categorized into three types:
T1) The trajectories of x1, x3, x4, and x7 always belong to

the domain of attraction shown in Fig. 4, and converge
to the stable fixed point xα;

T2) The trajectories of x2 and x6 converge to xα, but es-
cape from the domain during the transient;

T3) Though the initial condition x5 belongs to the domain,
the trajectory will not converge.

The classification is explained by the stable subspace
E s(x̄β). The type T2) and T3) are divided on the subspace
E s(x̄β). The trajectories of x2 and x6 get out of the domain
during the transients, but is always in the domain or inside
of E s(x̄β). The trajectory of x5 gets out of both the domain
and E s(x̄β). It implies that the stable manifold W s

−0.05(x̄β)
mainly defines the flow of the Eqs. (1) and (3). The other
subspace related to the eigenvalue of D|x̄=x̄β

governs the
global behavior.
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Figure 5: Trajectories on θ–θ̇ plane.

4. Remarks

In this paper, the stability of the simplest passive dy-
namic walking was numerically discussed. The mecha-
nism of simple passive dynamic walking was schematically
shown based on the phase structure, which is restricted by
the constraint of the ground, and found to become complex
in the neighborhood of unstable limit cycle.

The conditions to achieve the continuous walking and its
phase structure give us a clue to design biped robots. It is
our future project.
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