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Abstract– This paper investigates various bifurcations 
and related dynamics such as transitional phenomenon in 
four coupled line array of oscillators with hard-type 
nonlinearity. This system has some periodic attractors for 
comparatively large ε  value (= a parameter showing the 
degree of nonlinearity), and they disappear for a certain 
value of ε  via saddle-node(S-N) bifurcation to become 
quasi-periodic attractors when ε  is decreased. Sometimes, 
there exists a heteroclinic cycle at the bifurcation point. In 
such cases, the system presents the switching   
phenomenon right after the S-N bifurcation. We clarify the 
existence of some heteroclinic cycles by drawing unstable 
manifold of saddles in Poincare section, and demonstrate 
that the switching phenomenon is caused by the 
heteroclinic cycle by computer simulation. At last, we 
introduce wave propagation phenomenon briefly. 
 
1. Introduction 

 
The line array of coupled oscillators has been 

investigated for a long time mainly for weakly nonlinear 
case via averaging method, and the dynamics for weakly 
nonlinear case are almost elucidated [1]. But, its dynamics 
for strongly nonlinear case seems not to be investigated so 
far. In [2] we showed the switching dynamics in two 
coupled oscillators with hard type nonlinearity for 
strongly nonlinear case. In this paper, we investigate 
various dynamics related to global bifurcation in four 
coupled line array of oscillators with hard-type 
nonlinearity for comparatively large ε (degree of 
nonlinearity).  In particular, we are interested in periodic 
attractors observed only for large ε . These periodic 
attractors disappear via saddle-node bifurcation for a 
certain value of ε , and for smaller values of ε , quasi-
periodic attractors can be observed. At the bifurcation 
point, unstable manifold of saddles forms a heteroclinic 
cycles, and switching dynamics along this heteroclinic 
cycle can be observed right after the disappearance of the 
periodic attractor. In this system, we have found some 
types of heteroclinic (homoclinic) cycles, and we will 
analyze their dynamics in this paper. At last, we introduce 
wave propagation phenomenon observed for a certain 
parameter set.  

 
 

2. Fundamental Equation 
 

The four inductance-coupled oscillators with hard-type 
nonlinearity can be written by the following 8th –order 
autonomous system: 

 
 
 
 
 
 
 

(1) 
 
 
 
 
where 1x , 3x , 5x and 7x denote the normalized output 

voltage of the first, second, third and fourth oscillator, 

2x , 4x , 6x and 8x are their derivatives, respectively. The 
parameter ε >0 shows the degree of nonlinearity. The 
parameter 0<α <1 is a coupling factor; namely, α =1 
means maximum coupling, and α =0 means no coupling. 
The parameter β controls amplitude of oscillation. 
Equation (1) has symmetric nature such that the system is 
invariant by replacing  1x  by 7x , 2x  by 8x , 3x  by 5x  

and 4x  by 6x . In the following sections we take Poincare 

section at 2 0x = , therefore, a periodic flow in eight 
dimensional phase space become a discrete point in seven 
dimensional phase space 1 3 4 5 6 7 8( , , , , , , )x x x x x x x 7R∈ . 

 
3. Bifurcation of the Periodic Attractors 

 
We will show some examples of this bifurcation. Fig.1 

is (a) a periodic and (b) its symmetric counterpart for 
0.11, 3.1α β= =  and 0.48ε = . In Fig.1(a), the first and 

third oscillators oscillate with large amplitude and  
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(a) 
 
 
 
 

(b) 
Fig.1: A Periodic attractor for comparatively large ε .: 

0.11, 3.1α β= =  and 0.48ε = . Initial condition is 
(a) : (2.089,0.000 ,-0.025, 0.014, -2.026, 0.011,0.028,-0.732)  
(b) : (0.683,0.000 ,-0.086, -2.109, -0.015, -0.025,-0.0404,2.252) 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.2: Bifurcation diagram of two symmetric solutions: 
for 0.11α = , 3.1β =   

 
 
synchronized with reverse phase,  and second oscillator is 
zero and forth oscillator oscillates with small amplitude. 
Fig.1(b) is a symmetric counterpart of Fig.1(a). Fig.2 
presents bifurcation of these two periodic attractors; 
namely, the periodic solution in Fig.1(a)(Fig.1(b)) 
corresponds to a stable node N1(N2), and an associated 
saddle S1(S2) appears. The periodic solutions N1-S1 and 
N2-S2 show the saddle-node (S-N) bifurcation at the same 
point of 0.469( )cε ε= ≡ . We want to know what kind of 
dynamics occur for ε  smaller than cε . To predict this 
we draw schematic diagrams of nodes, saddles with their 
unstable manifolds(UM’s) in Fig.3. In Fig.3(a) one of the 
unstable manifold of S1(S2) goes to N2(N1). Namely, a 
cycle connecting two nodes and two saddles is formed  for 

cε ε> . For cε ε= this cycle become a 
“heteroclinic” cycle connecting two (degenerate) saddles. 
For cε ε<  all nodes, saddles and UM’s disappear via 
S-N bifurcation, but their “loci” still survive as far as ε  

close to cε . Therefore, we can predict the dynamics for 
ε  smaller than but close to cε  from the dynamics of 
UM’s for cε ε> .  
Fig.4 shows nodes, saddles and their UM’s in Poincare 
section (projection) for 0.470( )cε ε= > . Note a 
heteroclinic cycle connecting two (almost degenerate) 
saddles. The cross marked points show Poincare map of 
the (quasi-periodic) attractor for 0.468( )cε ε= < . It is 
clear that 1)flow stays around the locus of one node for  a 
long time, and 2) quickly moves along the locus of UM, 
and 3) stays again around the locus of the other node for a 
long time, and 4) moves quickly along the locus of UM, 
vice versa. This is a verification which we predict in 
Fig.3(c)! We call such dynamics “switching phenomenon”. 
This is observed for ε  smaller than but close to cε . 
When ε become smaller, the switching attractor becomes 
an ordinary quasi-periodic attractor. 
 
 
 
 
 
 
 

 
 
 
( a ) cε ε>      ( b ) cε ε=     ( c ) cε ε<  

  
 

Fig.3:Schematic diagram of nodes, saddles and UM’s 
 
 
 

 
 
 
 
 
 
 
 
 
 
Fig.4: Computer calculation of nodes, saddles and UM’s 

for 0.11α = , 3.1β =  0.470ε = Projection onto 
the 3 4 6( , , )x x x  - space. □ : saddle  ● :  node  
The cross mark(×) present the Poincare mapped 
points right after the S-N bifurcation at 0.468ε = . 
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(a) 
 
 
 
 
 

(b) 
Fig.5: Periodic attractors comparatively large 0.453ε =  

for 0.11, 3.1α β= =  . Initial condition is 
(a) : (1.931, 0.00 ,1.789, 1.538, 0.219, 0.710,-0.171,-0.015)  
(b) : (0.175, 0.00, 0.088, -0.722 -2.013, -0.889,-1.902,0.309) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.6: Computer calculation of nodes, saddles and UM’s 

for  0.11α = , 3.1β = 0.453ε = . Projection onto 
the 3 4 6( , , )x x x  - space. The cross mark(×) present 
the Poincare mapped points right after the S-N 
bifurcation at 0.451ε = . 

 
 
 
Next, we will show another example. Figures 5(a) and 

(b) show periodic solutions in which two of four 
oscillators oscillate with large amplitude with almost the 
same phase. This pair of periodic attractors disappear via 
S-N bifurcation for 0.452( )cε ε= ≡ , and a heteroclinic 
cycle is formed at cε . Fig.6 shows nodes, saddles and 
their UM’s in the projected Poincare section for the 
periodic solutions in Fig.5. The cross marks in the figure 
show Poincare mapped points for the corresponding 
switching attractor. Switching dynamics can be observed 
from condensed points around the loci of nodes and 
saddles.  

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7: Periodic attractors exist for comparatively large ε .: 
0.11, 3.1α β= =  and 0.48ε = . Initial condition is 

(a) : (2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 
(b) : (0.0, 0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0) 
(c) : (0.0, 0.0, 0.0, 0.0, 2.0, 0.0, 0.0, 0.0) 
(d) : (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.0, 0.0) 

 
At last, we will show an example of switching 

dynamics where two S-N bifurcation values are not the 
same. Fig.7 shows four periodic solutions where only one 
of four oscillators oscillates with large amplitude. The 
second and third periodic solutions disappear via S-N 
bifurcation at 0.445( 1)cε ε= ≡ . The first and fourth ones 
at 0.425( 2)cε ε= ≡ . For ε   smaller but close to 2cε , 
the switching dynamics between loci of attractors in 
Figs.7(a) and (b) occurs. Similarly, those between loci of 
attractors in Figs.7(c) and (d) occur via symmetry of 
equation. Fig.8 shows nodes, saddles and their UM’s in 
the projected Poincare section for the periodic solutions in 
Fig.7(a) and (b). The cross marks in the figure show 
Poincare mapped points for the corresponding switching 
attractor. In these cases two S-N bifurcation values are 
close but not the same (It is differ from the above cases); 
namely, 1 0.445cε =  and 2 0.425cε = . Therefore, no 
heteroclinic cycle is formed between two nodes. This 
dynamics can be understood from the schematic diagram 
of Fig.9. For ε > 1cε  there exist stable nodes N1, N2 and 
saddles S1,S2, and a cycle is formed by UM’s as shown in 
Fig.9(a). For 1cε ε=  the N2 and S2 degenerate as in 
Fig.9(b). For 2 1c cε ε ε< <  N2 and S2 disappear but  

( )a

( )b

( )c

( )d
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Fig.8: Computer calculation of nodes, saddles and UM’s 

for  0.11α = , 3.1β = 0.426ε = . Projection onto 
the 3 4 6( , , )x x x  - space. The cross mark(×) present 
the Poincare mapped points right after the S-N 
bifurcation at 0.424ε = . 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9:Schematic diagram of nodes, saddles and UM’s 
 
 

their loci still exist as in Fig.9(c). A cycle connecting N1 
to itself is formed. For ε = 2cε  N1 and S1 degenerate as 
in Fig.9(d). A homoclinic cycle connecting (degenerate) 
N1 to itself is formed. For 2cε ε<   N1, S1 and N2,S2 
and the homoclinic cycle disappear but their loci still exist 
as in Fig.9(e). Therefore, switching dynamics between the 
loci of N1 and N2 occur. 

From this example, we notice that bifurcation values 
are not necessarily equal for switching dynamics to occur. 

 
4. Wave Propagation Phenomenon [3] 

 
We can observe wave propagation phenomenon for 

comparatively large ε . Fig.10 shows an example. We can 
see the oscillation with large amplitude propagates from 
the first oscillator to the fourth oscillator successively. 
This wave is observed for 0.09 0.35ε = ～ for 

0.11, 3.1α β= = . 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.10: An example of wave propagation phenomenon  
observed  for 0.11, 3.1α β= = and 0.35ε =  from initial 
condition 1 2 3 4 5 6 7 8( , , , , , , , )x x x x x x x x = (2,0,0,0,0,0,0,0) 

 
 
 

5. Conclusions 
 
We investigate various switching dynamics in four 

coupled line array of oscillators with hard type 
nonlinearity. This switching dynamics are related to the 
saddle-node bifurcation and behavior of unstable manifold 
of saddles. We will investigate more through dynamics of 
unstable manifold in the near future. We also investigate 
wave propagation phenomenon. 
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