
Parallel Algorithms for Chaotic Exponential Tabu Search Hardware
for Quadratic Assignment Problems

Naoki Ogawa†, Yoshihiko Horio† and Kazuyuki Aihara‡∗

†Graduate School of Engineering, Tokyo Denki University, 2–2 Kanda–Nishiki–cho, Chiyoda–ku,
Tokyo, 101–8457, Japan. Email: 05gmd06@ed.cck.dendai.ac.jp Tel: +81–3–5280–3362

‡Aihara Complexity Modeling Project, ERATO, JST, 3–23–5 Uehara, Shibuya–ku, Tokyo, 151–0064, Japan
∗ Institute of Industrial Science, University of Tokyo, 4–6–1 Komaba, Meguro–ku, Tokyo, 153–8505, Japan

Abstract—The quadratic assignment problem (QAP) is
one of the nondeterministic polynomial (NP)-hard combi-
natorial optimization problems. One of the heuristic al-
gorithms for the QAP is tabu-search. Exponential tabu-
search, which is one of improved versions of the tabu
search, was proposed using a neural network, and it was
further extended to chaotic tabu search with a chaotic neu-
ral network. Chaotic dynamics shows efficient solution
search ability, and at the same time, it avoids the local min-
ima problem. We have proposed and built a chaotic expo-
nential tabu search hardware system with switched-current
chaotic neuron ICs for size-10 QAPs. The measurement
results have confirmed the validity and good performance
of the system. In this paper, we propose two parallel pro-
cessing algorithms for the chaotic exponential tabu search
hardware to accelerate the processing speed of the system,
in order to solve large-scale QAPs.

1. Introduction

The quadratic assignment problem (QAP) is one of the
NP-hard combinational optimization problems [1]. Obtain-
ing the optimal solution of the QAP requires impractical
computational time. Currently, the optimum solution of
the QAP with size more than 36 is unknown [1]. There-
fore, heuristic methods are very important to find good near
optimum solutions in reasonable time.

Tabu search with 2-opt algorithm is one of such heuristic
methods [2], which escapes from undesirable local minima
by using a tabu list. Once a certain 2-opt exchange is stored
in the tabu list, the same exchange is forbidden for x iter-
ations, where x is a tabu list size, and becomes available
after x iterations.

Hasegawa et al. proposed an implementation of the tabu
search on a neural network [3]–[5]. Furthermore, they ex-
tended the ordinary tabu to an exponential tabu by using
exponential decay of the refractoriness of a neuron model.
Moreover, they introduced chaotic search into the expo-
nential tabu search by replacing static neurons with chaotic
neurons [3]–[5]. As a result, they confirmed superior per-
formance of the chaotic exponential tabu search in solving
the QAP through computer simulations.

We proposed an efficient mixed analog/digital circuit

hardware for the chaotic exponential tabu search algo-
rithm [6], [7]. The hardware system uses switched-current
chaotic neuron integrated circuits for a rapid implementa-
tion of physical chaotic dynamics [8], [9]. However, the
hardware system uses a sequential update of a neuronal
states, so that n × n updates (n is the size of the QAP) are
required for one iteration of the algorithm. Therefore, it
would take a large amount of time for a large-size QAP.

In this paper, we propose two parallel processing al-
gorithms suitable for the hardware implementation of the
chaotic exponential tabu search. We confirm by simula-
tions that the speed of the solution search is greatly im-
proved with the proposed methods.

2. Quadratic Assignment Problem

The QAP of size n consists of n locations and n units. An
n×n “distance” matrix denotes mutual distances among the
locations. Moreover, an n × n “flow” matrix expresses mu-
tual relations among the units. The QAP is defined such
that we should find an assignment of the units to the loca-
tions that minimizes the cost function F p given by

F p =
n∑

g=1

n∑

h=1

aghbp(g)p(h), (1)

where p is a permutation of n elements given by eq. (2),
which expresses one of the feasible solutions, agh is the
distance between the locations g and h, bp(g)p(h) is the flow
between the units p(g) and p(h), and p(g) represents the gth
element of the permutation p.

p : (p(1), p(2), · · · , p(g), · · · , p(h), · · · , p(n)). (2)

If the current permutation p gives the minimum of F p, p is
the optimal solution.

3. Chaotic Exponential Tabu Search

Assuming the size of the problems is n, the neural net-
work composed of n × n chaotic neurons as shown in Fig.
1(a) is prepared. In [3]–[5], the state of each neuron is up-
dated one by one from the (1, 1)th neuron in the network
to the (n, n)th neuron. We denote this update sequence as

Bruges, Belgium, October 18-21, 2005
Theory and its Applications (NOLTA2005)

2005 International Symposium on Nonlinear

309

one “iteration.” If the (i, j)th neuron in the network fires
on the course of updating, the element i of the permutation
p is assigned to the index j as shown in Fig. 1(b). At the
same time, the element p(j) is assigned to the index q(i).
These exchanges are referred to “(i, j)” and “(p(j), q(i))”
assignments, respectively.

: neuron

j

i

1

3

2

n

1 2 3 n

(a)

p:(p(1) , . . . , p(j) , . . . , i , . . . , p(n))

p:(p(1) , . . . , i , . . . , p(j) , . . . , p(n))

index: 1 , . . . , j , . . . , q(i) , . . . , n

(i, j) and (p(j), q(i)) assignments

index: 1 , . . . , j , . . . , q(i) , . . . , n

(b)

Figure 1: (a) The neural network for the QAP of size n,
and (b) the permutation p and the (i, j) and (p(j), q(i))-
assignments.

The chaotic dynamics of the (i, j)th neuron in the net-
work used in our hardware system is defined as follows
[10]:

ξi j(t + 1) = β{F p
1 (t) − F p

i j (t)}, (3)

ηi j(t + 1) = −W
n∑

k=1

n∑

l=1

xkl(t) + k f ηi j(t)

−αxp(j)q(i)(t) + R, (4)
ζi j(t + 1) = krζi j(t) − αxi j(t) + R, (5)
xi j(t + 1) = f {ξi j(t + 1) + ηi j(t + 1)

+ζi j(t + 1)}, (6)

where F p
1 (t) is the current cost function, F p

i j (t) is the cost
after the (i, j)-assignment. Therefore, the internal state
ξi j(t + 1) gives the gain of the cost function resulting from
the (i, j)-assignment, where β is a scaling parameter of the
gain. Moreover the internal state ηi j(t) is a sum of feed-
back from other neurons and tabu effect for the (p(j), q(i))-
assignment, the internal state ζi j(t) is the tabu effect for the

(i, j)-assignment, α is a scaling parameter for the tabu ef-
fect, k f and kr are decay parameters for the tabu effect, R is
an external bias, W is a coupling coefficient between neu-
rons, and f (·) is a monotonically increasing nonlinear out-
put function of the neuron. During the sequential updating
process, the (i, j)th neuron fires if xi j(t + 1) ≥ 0.5.

4. Simplified Gain Calculation

Eq. (3) gives a gain resulting from the (i, j)-assignment.
By substituting eq. (1) to eq. (3), the gain can be simplified
as shown by the following equation.

F p
1 (t) − F p

i j (t) = a j j(bp(j)p(j) − bii)
+ a jq(i)(bp(j)i − bip(j))
+ aq(i) j(bip(j) − bp(j)i)
+ aq(i)q(i)(bii − bp(j)p(j))

+

n∑

k=1,k�i, j

{ak j(bp(k)p(j) − bp(k)i)

+ akq(i)(bp(k)i − bp(k)p(j))
+ a jk(bp(j)p(k) − bip(k))
+ aq(i)k(bip(k) − bp(j)k)}, (7)

where ai j and bi j are the (i, j)th elements of the distance
matrix and the flow matrix, respectively. We use eq. (7) in
the hardware implementation of the system.

5. Parallel Algorithms

We constructed the hardware system for size-10 QAPs,
and confirmed good performance of the system [6], [7].
However, the current system updates one neuron at a time.
Therefore, if a large number of neurons are used for a large-
scale QAP, it would take long time to complete one itera-
tion, that is, to update all the neurons once.

When one of the neurons is updated, all of the remaining
neurons are idle and wasting time. Therefore, we can ex-
ploit this idling time to realize parallel updatings of some
neuronal states. The parallel calculation of the gains given
by eq. (7) for some neurons, of which internal states are up-
dated simultaneously, realizes a parallel processing scheme
for the exponential chaotic tabu search hardware system.
We propose herein two such parallel algorithms.

5.1. m-Neuron-Parallel Algorithm

The first algorithm is the m-neuron-parallel algorithm.
In the algorithm, we first pick m consecutive neurons in
the network starting from the first neuron of the network,
i. e. the (1,1)th neuron. Then, we update all of these neu-
rons, and calculate the gains of the cost function for these
neurons simultaneously. Finally, we chose the neuron that
has the largest output value. If the output of this neuron ex-
ceeds the firing threshold, i. e. 0.5, this neuron fires, and the
elements of the permutation p corresponding to this neuron

310

1, 1 1, 2 1, 3

n, n

ξ12(1)

ξ13(1)

ξ11(1)

1, 4

ξ12(2)

ξ13(2)

ξ14(2)t = 1
t = 2

Figure 2: The m-neuron-parallel algorithm (m=3).

are exchanged. After this process, we chose next m neurons
from the network, and continue the process. For example,
as shown in Fig. 2, when m = 3, the first neuron group con-
sists of the (1, 1)th, (1, 2)th and (1,3)th neurons, the second
group is composed of the (1, 2)th, (1, 3)th and (1, 4)th neu-
rons, and so on. Thus, the final neuron group consists of
the (n, n)th, (1, 1)th and (1, 2)th neurons. One iteration is
completed when the group of m neurons returns to the first
group. Therefore, a total of m updates are executed for each
neuron in one iteration. In contrast, the original algorithm
updates each neuron only once in one iteration.

5.2. Row-Parallel Algorithm

The second algorithm is the row-parallel algorithm. In
this algorithm, neurons in the same row are independently
updated simultaneously, according to the original algo-
rithm. As shown in Fig. 3, the first neuron group consists of
(1, 1)th to (1, n)th neurons, the second neuron group is com-
posed of the (2,1)th to (2, n)th neurons and so on. Like the
m-neuron-parallel algorithm, the neuron that has the largest
output in each group fires if the output exceeds the firing
threshold, and the corresponding exchanges are executed
for the permutation p.

In the m-neuron-parallel algorithm, each neuron is in-
cluded in the updating neuron group m times in one itera-
tion. In contrast, in the row-parallel algorithm, each neuron
is updated only once in one iteration, because the index of
the head of the updating neuron group is incremented by
n, which is the size of the problem, so that each neuron is
included in the group only once throughout one iteration.

i = 1

ξ12(1)

ξ13(1)

ξ11(1)

ξ1n(1)

t = 1

t = n

t = 3

t = 2i = 2

i = 3

i = n

.
.
.
.

.
.
.
.

ξ2n(2)

ξ23(2)

ξ22(2)

ξ21(2)

Figure 3: The row-parallel algorithm.

6. Simulation Results

We solved the benchmark problems, Tai10a, Tai12a, and
Tai15a from the QAP library [1] using the proposed paral-
lel processing algorithms. Here, we define the normalized
average iteration number (NAIN) for obtaining the optimal
solution as

NAIN =
AIN

AINWOPP
, (8)

where AIN is the average iteration number to obtain the op-
timal solution using the proposed parallel processing algo-
rithm, and AINWOPP is that without any parallel scheme,
that is, using the original sequential update. These iteration
numbers are averaged over 100 trials with different initial
conditions.

Fig. 4 shows NAIN with the m-neuron-parallel algorithm
when the number of parallel updated neurons m is changed.
As shown in the figure, the processing speed is improved
as m is increased. Furthermore, a proper number of the
parallel neurons m would be equal or around the size of the
problem n, i. e. m ≈ n, because the improvement seems to
saturate even if we further increase m.

Results for the m-neuron-parallel algorithm with m = 20
and the row-parallel algorithm are summarized in Table.
1. The NAINs of row-parallel algorithm are calculated
such that we divide the AINs by 20 so that each neuron
is updated with the same number of counts as in the m-
neuron-parallel algorithm with m = 20. As shown in the
table, the speed of the m-neuron-parallel algorithm is about
ten times faster than the original non-parallel algorithm.
Moreover, the m-neuron-parallel algorithm is superior to
the row-parallel algorithm in terms of the efficiency of the
chaotic search. However, the row-parallel algorithm would
have an advantage for the hardware implementation, be-

311

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 5 10 15 20

"Tai10a"

"Tai12a"

"Tai15a"

Number of parallel neurons m

N
A

IN

Figure 4: Simulation results for the m-neuron-parallel algo-
rithm. The normalized average iteration numbers defined
by eq. (8) are plotted with different m for three QAP in-
stances.

Table 1: Summary of the simulation results. NAINs given
in eq. (8) are shown.

Instances Tai10a Tai12a Tai15a
m-neuron-parallel (m=20) 0.10 0.15 0.07

row-parallel 0.72 0.69 0.79

cause the modularity of the row-parallel algorithm is suit-
able for a modular structure of the hardware system. The
overall assessment of the total performance of these paral-
lel algorithms considering the actual hardware restrictions
is an important future problem.

7. Conclusions

We have proposed two parallel processing algorithms,
that is, m-neuron-parallel and row-parallel algorithms, for
the chaotic exponential tabu search hardware. We have
shown that the m-neuron-parallel algorithm accelerates the
processing speed about ten times as fast as the original se-
quential algorithm.

In a future investigation, we intend to use different sizes
and instances of QAPs for further analyses of the parallel
algorithms. Moreover, we will improve the proposed algo-
rithms. In addition we will develop a parallel processing
hardware system based on the proposed algorithms.

Acknowledgments

The authors would like to thank T. Ikeguchi of Saitama
University and M. Hasegawa of Communications Research
Laboratory for their valuable discussions. This work was
supported in part by Grant-in-Aid no. 16300072 from the

Ministry of Education, Culture, Sports, Science and Tech-
nology, Japan.

References

[1] R. E. Burkard, S. E. Karisch and F. Rendl, “QAPLIB
- A quadratic assignment problem library,” avail-
able via world wide web to http://www.opt.math.tu-
graz.ac.at/qaplib/

[2] E. Taillard, “Robust tabu search for the quadratic as-
signment problems,” Parallel computing, vol. 17, pp.
443–455, 1991.

[3] M. Hasegawa, T. Ikeguchi and K. Aihara, “A novel
chaotic search for quadratic assignment problems,” Eu-
ropean Journal of Operational Research, vol. 139, pp.
543–556, 2002.

[4] M. Hasegawa, T. Ikeguchi and K. Aihara, “A novel
chaotic search for combinatorial optimization,” in
Proc. Int. symp. Nonlinear Theory and Its Applica-
tions, pp. 613–616, 1997.

[5] M. Hasegawa, T. Ikeguchi and K. Aihara, “Expo-
nential and chaotic neurodynaminal tabu searches for
quadratic assignment problems,” Control and Cyber-
netics, vol. 29, no. 3, pp. 773–788, 2000.

[6] S. Matsui, Y. Kobayashi, K. Watanabe, and Y. Horio,
“Exponential chaotic search hardware for quadratic
assignment problems using switched-current chaotic
neuron IC,” in Proc. IJCNN, vol. 3, pp. 2221–2226,
2004.

[7] S. Matsui, Y. Horio, and K. Aihara, “Parameter set-
tling for chaos-driven tabu search hardware system,”
in Proc. RISP Int. Workshop on Nonlinear Circuit and
Signal Processing, pp. 151–154, 2005.

[8] R. Herrera, Y. Horio and K. Suyama, “IC implementa-
tion of a current-mode chaotic neuron,” in Proc. IEEE
ISCAS, vol. 3, pp. 546–549, 1998.

[9] R. Herrera, Y. Horio and K. Suyama, “Realizing the
chaotic neuron model: IC solution,” in Proc. Int. symp.
Nonlinear Theory and Its Applications, vol. 1, pp. 625–
628, 1997.

[10] K. Tanaka, Y. Horio and K. Aihara, “A modified al-
gorithm for the quadratic assignment problem using
chaotic-neuro-dynamics for VLSI implementation,” in
Proc. IJCNN, pp. 240–245, 2001.

312

