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Abstract—This paper describes the background and ba-
sic ideas of wave-based neural networks including reser-
voir computing for realizing energy-efficient neural net-
work hardware. We also show the significance of the
framework of complex-valued neural networks.

1. Introduction

In these years, neural networks (NNs) are widely and
actively used in artificial intelligence (AI) fields. The most
basic function in modern AI lies in the extraction of corre-
lations of events in various levels and diverse areas. Find-
ing correlations sometimes leads to explicit expression of
causality and/or generation of new information. Storing of
correlation is also the most basic function of a neuron mi-
croscopically as well as a neuron group macroscopically.
From this viewpoint of human beings too, correlation find-
ing and storing should definitely be of great importance
more and more.

Present AI systems are realized as neuro-based software
on von-Neumann type hardware. Then, a large amount of
energy is consumed in a system to deal with large-scale
data for learning and processing with deep learning or other
methods. Edge nodes in sensor networks exhibit large en-
ergy consumption in a total system. Saving the energy is
a seriously pressing issue. Hardware innovation has great
significance also from this point of view.

2. Wiring and variability issues

Here, let’s discuss development and technologies by re-
ferring to Fig. 1. Researches on neural hardware hold a
long history of several decades in multiple directions. In
any direction, however, they encounter a common difficulty
of wiring increase at an exponential rate along the growth
of the network size, resulting in fatal infabricability. Fur-
thermore, the increase of the total wiring length leads di-

A part of this work is to be presented at International Conference on
Neural Information Processing (ICONIP) 2017 [1].

Complex-valued neural 

framework

&

Wave-based hardware   

incl. quantum comp.   

Pattern representation 

and processing

Symbol representation 

and processing

M
a
s
s
iv

e
-c

o
n
n
e
c
ti
o
n
 

a
rc

h
it
e
c
tu

re

S
p
a
rs

e
-c

o
n
n
e

c
ti
o
n
 

a
rc

h
it
e

c
tu

re

Logic framework

&

Particle-based 

parallel hardware  

von-Neumann

framework

&

Particle-based 

hardware  

Modular/Hierarchical 

neural network 

framework

Neural 

network

framework   

Spiking 

neural networks

Figure 1: Conceptual diagram showing the promising information-
processing frameworks and hardware architectures mapped in the coor-
dinates of the degree of pattern-/symbol-information representations and
processing modes as well as the degree of sparsity/massiveness in wiring
(modified from Ref. [1]).

rectly to the increase of electric power to charge and dis-
charge the wires. Energy saving definitely requires the so-
lution of wiring explosion.

The wiring explosion has been a big problem even in
von-Neumann computers. In the von-Neumann systems in
addition, the downscaling of elementary devices is also a
key point. Ultimate downscaling of such a level that an
element is composed of only several tens of atoms brings
about relatively huge variability in the electronic character-
istics of the elementary devices. The variability disables us
for precise fabrication of a circuit in detail. This fact sug-
gests strongly the increasing importance of neural adapt-
ability in information processing systems widely in the near
future. This issue is also one of the most serious problems
though the limitation in Moore’s Law refers to it only im-
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plicitly.

3. Complex-valued neural networks, a wave-friendly
architecture

Complex-valued neural networks (CVNNs) are con-
structs a framework for dealing with complex amplitude
[2–9]. They extend their applicable fields mainly in elec-
tronics such as coherent imaging [10–12], channel pre-
diction in multi-path mobile communications [13, 14] to
treat complicated electromagnetic field, lightwave infor-
mation processing systems [15–18], in particular in adap-
tive processing of phase information [19–21] and light-
wave frequency-multiplexed information processing [22,
23], lightwave processing without physical wire intercon-
nections [24–28], as well as quantum computing [29].

The most important advantage of a CVNN lies in the su-
perior generalization ability in application to processing of
wave-originating information and wave-based neural hard-
ware [30,31]. The merit is significant also in reservoir com-
puting utilizing lightwave [32,33] including echo state net-
works [34,35].

4. Comparisons of various neural network hardware

Conventional computers represent information by
whether one or more static particle (electron) exist or not.
In this sense, they use baseband (static) physical represen-
tation. This strategy is suitable for realizing a memory us-
ing electrons and representing information as digital sym-
bols (bits). In particular, the ease in function updates by
rewriting software programs has been worthy to note. This
situation applies also to neural network implementation by
using field programmable gate arrays (FPGAs) or general
purpose computing on graphics processing unit (GPGPU).

Wave implementation of neural connections for adaptive
learning and processing is somewhat in contrast. Though it
is true that analog use sometimes results in a limited accu-
racy in each element, this is not a serious problem because
the neural adaptability compensates this weakness in the
operation as a system. We would rather utilize the great
merit of analog use, namely the continuity in response, that
realizes diverse and flexible learning ability in the physi-
cal level. Contrarily, in digital systems, dynamics such as
learning need to be written as software. This is because the
metric of bit information is completely separate from the
physical metric such as voltage, resulting in the necessity
for human beings to assign information and/or meaning of
a bit by writing software.

In history, the parametron also dealt with phase infor-
mation [36]. Its memory employed symbol representation
in such a manner that the circuit holds bistable or multi-
stable states in its phase values to choose one of the possi-
ble states. Its processing also treated the phase as a symbol.
Parametron is a symbol-processing digital system, dealing
with bit information, not fully successful in utilizing the

merit of employing the wave/phase. This point was re-
vealed as a weak point, as well as the incompatibility with
integration, of parametron.

In contrast, the basis of neural networks lies in pattern in-
formation representation and pattern information process-
ing. Then, it is possible in principle that a physically
natural spatio-temporal gradient determines the neural dy-
namics. In this sense, neural networks are compatible
with physical implementation. They can also include non-
linearity. In addition, they can realize information con-
nections among processing elements without charge and
discharge by employing wave-related phenomena without
physical lines. Such architecture realizes flexible, massive
and energy-efficient networks.

Pulse neural networks, or spiking neural networks, may
be located between these two architectures mentioned
above. They have a set of merits such as that fact that cor-
relation is obtained simply as a time-domain average of a
series of pulses multiplied by another sequence of pulses.
However, because of the baseband circuit structure, they
have a shortcoming of charge-and-discharge energy con-
sumption just like conventional digital neural networks. In
addition, the multiple-pulse information representation re-
quires a frequency bandwidth wider than what is needed
intrinsically for the information representation, resulting in
larger power consumption.

5. CVNNs based on natural metric of waves

When we deal fully with wave information, we actually
work on its amplitude and phase. We have to introduce the
natural metric involved in the complex amplitude for use of
physical wave nature into the neural dynamics. Nonliearity
should also be in harmony with the amplitude and phase
so that it works as a meaningful nonlinear function. Such
neural framework is the CVNN. When we deal with po-
larization additionally, we should employ/combine quater-
nion neural networks, an extended framework of complex-
valued neural networks [12,37–39].

Consequently, it is clear that wave-connection neural
networks hold a great advantage in particular in realiza-
tion of energy-efficient neural-network hardware. There-
fore, the framework of CVNNs plays an important role in
neural hardware in the next generation.

6. Conclusion

We discussed energy-efficient neural networks and reser-
voir computing. There the wave-connection neural net-
works hold a great advantage. The framework of the
complex-valued neural networks serves an important role.
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