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We demonstrate in numerical experiments that estimators of strength and directionality of cou-

pling between oscillators based on modeling of their phase dynamics [D.A. Smirnov and B.P. Bez-
ruchko, Phys. Rev. E 68, 046209 (2003)] are widely applicable. Namely, although the expressions for 
the estimators and their confidence bands are derived for linear uncoupled oscillators under the influ-
ence of independent sources of Gaussian white noise, they turn out to allow reliable characterization 
of coupling from relatively short time series for different properties of noise, significant phase nonlin-
earity of the oscillators, and non-vanishing coupling between them. We apply the estimators to ana-
lyze a two-channel human intracranial epileptic electroencephalogram (EEG) recording with the pur-
pose of epileptic focus localization. 

 
 

 
1. Introduction 

Characterization of coupling between two oscillatory 
systems from their time series is an important task in differ-
ent fields of scientific research and practice, including cli-
matology, electronics, and physiology, etc. Most of the 
well-known approaches, such as cross-spectral analysis and 
information-theoretic characteristics, are often insufficient 
to detect directional coupling from complex real-world sig-
nals. In the last years, new promising techniques are sug-
gested by nonlinear dynamics. One of them if the sensitive 
approach involves construction of an empiric model for the 
phase dynamics and calculation of interaction strength from 
the values of its parameters. The idea is suggested origi-
nally in [1] and the technique to realize it is called “evolu-
tion map approach” (EMA). It is efficient for analysis of 
oscillatory processes unsynchronized with each other and 
exhibiting pronounced main rhythms of oscillations that 
allows to introduce well-defined phases. In its initial ver-
sion, EMA provides reliable results for stationary time se-
ries of quite a considerable length, such as 5000 
characteristic periods under moderate noise levels. 

However, in practice one often encounters nonstation-
ary signals (e.g., EEG recordings). The special corrections 
have been introduced into formulas for the EMA coupling 
estimators, so that the latter become unbiased even in the 
case of relatively short time series (down to 50 basic peri-
ods), and expressions for their confidence bands have been 
derived in [2]. The modified expressions for the coupling 
estimators are derived under the assumptions of linear un-
coupled phase oscillators influenced by independent 
sources of Gaussian white noise. Their applicability in other 
cases has neither been rigorously proven, nor thoroughly 
investigated experimentally. Our purpose here consists in a 
systematical investigation of the limits of applicability of 
the modified EMA estimators.  
 
 

2. Methods 
2.1. Modified evolution map approach 

The main idea of the original method is to estimate 
how strongly future evolution of the phase of one system 
depends on the current value of the phase of the other 
system. To achieve this, one obtains time series of the 
oscillations’ phases )(2,1 itφ  from original time series of 
the two systems . The phases are estimates using 
the analytic signal concept typically in one of the two 
ways: via Hilbert transform and complex wavelet trans-
form. The sampling frequency for the original time se-
ries is desirable to be not less than 20 points per basic 
period [3]. In variety of situations, the phase dynamics 
of oscillators exhibiting a pronounced main rhythm are 
adequately described with stochastic differential equa-
tions of the form 

)(2,1 itx

)(),( 2,1212,12,12,1 tGdtd ξφφωφ ++= , (1) 
where parameters 2,1ω  govern oscillators’ frequencies, 

)(tiξ  are independent Gaussian white noises. When 
dealing with discrete time series, it is convenient to con-
sider a difference form of these equations  
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where )()()( ttt iii φτφ −+≡∆  are phase increments over 
fixed time interval τ, )(tiε
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The estimators  appear “good” only for very long sta-
tionary signals whose length should be about 5000 basic 
periods for the sampling frequency 10-20 points per a basic 
period and moderate noise level [2]. For shorter time series 
often encountered in practice, these estimators turn out to 
be biased. The modified estimators 

2,1̂c

2,1̂γ  for  and the 

estimator  for the directionality index 
 are suggested in [2]. Expressions for their 95% 

confidence bands are derived in the from 
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]ˆ8.1ˆ,ˆ6.1ˆ[ ˆˆ ii ii γγ σγσγ +−  and . Under the assump-
tion of linear uncoupled phase oscillators and independent 
sources of Gaussian white noise, these modified estimators 
are unbiased and provide the rate of erroneous conclusions 
about coupling presence and directionality less than 5 % for 
time series whose length may be as small as 50 basic peri-
ods. 
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2.2. Technique for investigation of applicability limits in 
numerical experiments 

In this work, we vary different properties of oscillators 
and find out where the estimators 2,1̂γ  and  are still reli-
able. Following Refs. [1, 2], we use the third-order poly-
nomials . We calculate also mean phase coher-

ence

δ̂

iF

)}(exp{ 12 φφρ −= j , where angle brackets stand for 
the time average, which quantifies the degree of synchrony 
in the systems’ oscillations, to check whether it can always 
warn about inapplicability of the method. The time series of 
phases in numerical experiments are of the length N = 1000 
and we use ensembles of 1000 time series to assess statisti-
cal properties. 
 
3. Results 
3.1. Influence of noise properties 

We apply the method to estimate coupling from time 
realizations with different properties of 2,1ε  for 

0),( 21 ≡φφiG . Noises 2,1ε  are taken to be Gaussian with 
autocorrelation function (ACF) linearly decreasing down to 
zero over the interval [ . Firstly we vary T in the range ]T,0
[ ]τ10,0  ( πτ 2= ). Noise level σσσ == 21  is varied in the 
range [0,0.6]. We found that for all T and σ, the number of 
erroneous conclusions about coupling presence does not 
exceed 4 % and the estimators 2,1̂γ  and  remain unbiased. 
Thus, as one can judge from this particular example, varia-
tion of the ACFs of the noises 

δ̂

2,1ε  does not itself bound 

applicability of the estimators 2,1̂γ  and . δ̂
Next, we consider noises 2,1ε  with qualitatively differ-

ent probability density functions (PDFs). We consider the 
following PDFs: uniform distribution on a finite interval, 
demeaned chi-square distribution with one degree of free-
dom, and random alternation of values drawn from two 
Gaussian distributions with the same variance and different 
expectations. 

The results are practically the same for all PDFs and 

noise levels. Namely, the estimators are unbiased and 
the number of erroneous conclusions about coupling 
presence is less than 5 %. So, the form of the PDFs does 
not seem to affect applicability of the estimators also. 

 
3.2. Influence of the individual nonlinearities of oscilla-
tors  

To check to what extent the properties of the esti-
mators deteriorate when oscillators are nonlinear, we 
calculate 2,1̂γ  and  from time realizations of the sys-
tem (1) with 

δ̂

iii bG φωφφ cos),( 21 += . The coefficient b 
determines the “phase nonlinearity strength”. The results 
for 1̂γ  are shown in Fig. 1 (а). They are analogous for 

2γ̂ . The estimator 1̂γ  is unbiased and the probability of 
erroneous conclusion about coupling presence is less 
than 5 % in the region to the left from the solid line, i.e. 
up to sufficiently strong nonlinearity b = 0.3-0.7. The 
values of mean phase coherence ρ are shown in Fig. 1 
(b) with grayscale, ρ increases with nonlinearity to some 
extent but becomes relatively small. 

 

 
FIG. 1. a) Regions of the coupling estimators applicabil-

ity on the plane “nonlinearity – noise” for uncoupled 
oscillators. b) Mean phase coherence values in gray-

scale. 
 

3.3. Influence of coupling strength 
We calculate 2,1̂γ  and  from time realizations of 

the system (1) with 
δ̂

)sin(),( 2,11,22,12,1212,1 φφωφφ −+= kG . 
The coefficients  determine the coupling strengths.  21,kk

Unidirectional coupling ( ) In Fig. 2 
(а) we show the “triangle” region where the estimates 

kkk == 21 ,0

2,1̂γ  are unbiased (this condition determines the right 
boundary which is close to vertical straight line) and the 
number of correct conclusions about coupling strength is 
greater than 75% (this condition determines the curved 
left boundary which makes sense as a minimal reliably 
identifiable coupling strength for a given noise level). 
The estimators are erroneous if 8.0>ρ , see Fig. 2 (а).  

The causes of bias in the estimates in the case of 
large k are following: (i) synchronization for low noise 
levels [Fig. 2 (а)], (ii) nonlinearity of the phase dynam-
ics induced by the presence of coupling for high noise 
levels. At a given noise level, the best situation is an 
intermediate strength of unidirectional coupling, since at 
weak coupling the probability of correct conclusion is 
low due to noise and at strong coupling the estimates 
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become biased due to synchronization or just phase nonlin-
earity.  

Bidirectional coupling.( , ). The 
value of coupling asymmetry  is held constant. The 
results of calculations are shown in Fig. 2 (b). The region of 
the coupling estimators efficiency is bounded on the right 
(i.e. for large coupling strength). ρ  reaches a value of 0.8 
within this region. Again, there are the same two causes 
that limit the estimators’ applicability.  

kk =1 02.02 += kk

12 kk −

 

 
FIG. 2. Regions of the coupling estimators applicability on 
the plane “coupling – noise” for coupled phase oscillators 
а) unidirectional coupling, b) bidirectional asymmetrical 

coupling 
 

3.4. Van der Pol oscillators 
More realistic is a situation where one observes not 

phases directly but rather some variables  from which one 
needs to calculate phases and, hence, may introduce some 
additional errors. We take coupled van der Pol oscillators as 
an object:  
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We calculate the phases of variables  with the aid of 
Hilbert transform The oscillators possess individual phase 
nonlinearity. Noise in the phase dynamics equations is not 
precisely Gaussian and white. So, this object represents 
simultaneous violation of several conditions for the estima-
tors applicability. We consider unidirectional coupling: 

, the value of  In Fig. 3 (a) we present the 
region where the estimators are unbiased (right boundary) 
and the probability of correct conclusion about coupling 
presence is greater than 75 % (left boundary). ρ reaches 
approximately 0.7 within the region. The results are quite 
analogous to Fig. 2 (a) in Sec.3.3.  

21, xx

01 =k kk =2

 
FIG. 3. Regions of the coupling estimators applicabil-

ity on the plane “coupling – noise” for unidirectionally 
coupled van der Pol. а) Van der Pol oscillators with dy-
namical noise. b) Van der Pol oscillators with dynamical 

and observation noises 

Then we consider the presence of  observational 
Gaussian white noises in systems (the standard deviation 
s) that are added to the variables . Dynamical noise 
level is fixed to be σ = 0.025. Range of the method effi-
ciency is shown in Fig. 3 (b). Again, the range of the 
method applicability is not infinitesimally small but 
rather significant. 

2,1x

 
3.5. Application to electroencephalogram (EEG) data 

We apply the technique to the analysis of two-
channel intracranial human EEG with the temporal lobe 
epilepsy. The first channel corresponds to the left hippo-
campus, the second one to the left temporal neocortex. 
The time series are presented in Fig.4 (a). The seizure 
starts approximately at the 100th second and finishes 
approximately at the 220th second (the dashed lines). 
We have computed coupling characteristics in a running 
window of the length of 24 seconds. The results are pre-
sented in Fig. 4 (b), where gray tail denotes 95% confi-
dence bands for δ. One can observe a long interval (30 
second length) of significant predominant coupling di-
rection neocortex → hippocampus before the seizure. So 
it is possible to perform epileptic focus localization. 

This is only the first attempt and the results should 
not be overestimated, being rather an illustration of the 
way how to apply the method in practice and what kind 
of information one can expect from it. 

 
FIG. 4. a) EEG recordings from hippocampus (top) 

and neocortex (bottom). c) Coupling directionality index 
and mean phase coherence. Negative delta values corre-
spond to coupling direction neocortex → hippocampus 

(approximately from the 20th second to the 50th second) 
 

4. Conclusion 
Numerical experiments demonstrate that the esti-

mators of coupling between oscillatory systems based on 
phase dynamics modeling are sufficiently widely appli-
cable. Although they are derived under the strict as-
sumption of linear uncoupled oscillators and independ-
ent sources of Gaussian white noise, they are valid for 
various dynamical noise properties including the case of 
common noise and finite (not negligibly small) strengths 
of nonlinearity, coupling, and observational noise. 

 The modified EMA analyzed here is the extension 
of the EMA to short time series so that it seems to be a 
very powerful method and deserves special attention. 
Based on considering several exemplary oscillators, we 
formulated empiric conditions for applicability of the 
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corresponding coupling estimators. We confirm the poten-
tial for the application of the estimators in practice to ana-
lyze real-world complex systems. In particular, our first 
attempt to apply them for epileptic focus localization from 
multichannel intracranial EEG recordings illustrated in the 
present paper looks promising. 
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