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Abstract—Issues of resonance that appear in non-
standard random walk models are discussed. The first
walk is called repulsive delayed random walk, which is
described in the context of a stick balancing experiment.
The second one is called sticky random walk, which is in-
troduced to model string entanglement. Peculiar resonant
effects with respect to these random walks are presented.

1. Introduction

A combination of non-linear dynamics and noise gives
rise to the phenomena called stochastic resonance, which
has been investigated actively [1, 2, 3, 4, 5]. The phe-
nomena has been claimed to appear in a wide variety of
things, such as climate change and neural information pro-
cessing. The main theme of this paper is this type of phe-
nomena in the context of non-standard random walks that
we have proposed: repulsive [6] and sticky. The former
random walk was mainly derived from a stick balancing
experiment[7, 8, 9], while the latter tries to model string en-
tanglement. With both random walks, we observed rather
unexpected phenomena that can be viewed as resonance.
In the following, we describe each model and its associ-
ated behavior.

2. Repulsive Delayed RandomWalk

2.1. Model

Delayed random walks have been proposed and stud-
ied as one approach to investigate systems with noise and
delay[10, 11, 12]. This is a random walk whose transition
probability depends on its position at a fixed interval in the
past. The focus has been placed on a model that has an
attractive bias to a single point. This stable case has been
applied to such processes as posture controls[13]. Analyti-
cally, the attractive delayed random walk model has shown
such behavior as an oscillatory correlation function with
increasing delay.
However, such a model is not suitable to model an un-

stable situation, like balancing a stick in an experiment.
Instead, a delayed random walk that has a repulsive point
is used. We can consider many different possibilities, but
here we test one-dimensional discrete time and step random

walk with the origin as a repulsive point. Mathematically,
we can define our model as follows. Let the position of the
random walker at time step t be given byX(t) and the fixed
point be set at the origin,X = 0. The delayed random walk
is defined by the following conditional probabilities.

P (X(t + 1) = X(t) + 1|X(t− τ) > 0) = p

P (X(t + 1) = X(t) + 1|X(t− τ) = 0) =
1
2

P (X(t + 1) = X(t) + 1|X(t− τ) < 0) = 1 − p,

where 0 < p < 1 and τ are the delay. The walker refers
to its position in the past with delay to decide on the bias
of the next step. The attractive delayed model is a case of
p < 0.5, where the origin becomes attractive with no delay,
τ = 0. However, p > 0.5 gives the repulsive case that will
be discussed in the rest of this paper. Though this appears
to be a small change from the attractive delayed case, we
actually observed very different behavior from it. Most of
all, when the walker escapes from the origin, we no longer
have a stationary probability distribution. This makes an
analytical treatment of this repulsive model more difficult
compared with the attractive delayed case, particularly with
a non-zero delay. Our investigation in this paper was done
using computer simulations. The most notable feature of
this model is that we can find an optimal combination of the
bias p and τ where the random walker can be kept around
the origin for the longest duration.

2.2. Simulation Results

As in the stick balance experiment, one of the main inter-
ests is how long the walker can be kept around the repulsive
fixed point. We investigated this by focusing on the average
first passage time L to reach a certain position (a limit point
±X∗) away from the origin. In other words, we measured
the average time for the walker, starting from the origin to
reach the limit point for the first time, as we changed pa-
rameters in the model. The longer average of the first pas-
sage time indicates slower diffusion, which corresponds to
a situation of longer stick balancing.
Such analytical results have yet to be obtained for the

non-zero delay using a computer simulation. We used an
ensemble of 10,000 walkers. The initial condition was set
so that the walker performed a normal random walk with
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no bias p = 0.5 for a duration of t = (−τ, 0). The walker’s
position at t = 0 was set as the origin X = 0. The limit
point was set at ±X∗. We measured the number of steps
for each walker to go from the origin to ±X∗ and aver-
aged them. We performed computer simulations for var-
ious bias p and delay τ . The representative results are
given in Figure 1, where we have plotted the normalized
first passage time Ln ≡ 〈L(τ)〉

〈L(τ=0)〉 against the normalized
delay τn ≡ τ p−q

X∗ , (q = 1 − p).
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Figure 1: Normalized average first passage time Ln as we
changed normalized delay τn. The parameter sets (p, X∗)
plotted are (0.6, 30), (0.6, 100), (0.8, 30), and (0.8, 100)

We can see that the graph goes through a maximum with
an optimal balance of τ given p. The peak height is ap-
proximately 1.7 times the average first passage time of the
zero delay case. This phenomenon can be viewed as a res-
onance between noise (bias) and delay. Tuning them can
help to keep the walker balanced near the origin.

2.3. Delayed Stochastic Control

These theoretical results imply that systems can reach a
better balancing performance if an appropriate amount of
fluctuation is added given the feedback or reaction delay.
We have termed this type of control, which is different from
standard feedback or predictive ones, as delayed stochastic
control. We performed the following experiment to gain
some insight into the existence or utilization of this con-
trol scheme. We asked the subjects to sit on a chair and
balance a stick, as in the previous stick balancing experi-
ment. But, this time, the subjects were allowed to move
their bodies, not just their arms, as they tried to balance
the stick. One way to do this is to hold an object with the
other hand and move it (Figure 2). Another way is to move
their legs. We measured the time for which they could keep
the sticks balanced, and compared it with the normal non-
movement situations. Out of the six subjects we tested,
three subjects showed notable improvement in balancing
by reaching their own optimal level of movement (Figure
3).

Figure 2: Picture of a subject balancing a stick on one hand
while moving an object in the other.
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Figure 3: (A) Example of improvement on balancing tasks
with (square) and without (dot) moving an object. The sub-
ject was given 5 trials without previous practice. By the 5th
trial, the improvement was significant. (B) Another subject
practiced for a few hours. Here, again improvement with
moving the object was evident.

370



Some practice was needed for these subjects to reach this
better performance. We believe that the subjects were tun-
ing the appropriate level of fluctuation given their reaction
times and prediction accuracy. Even though more thorough
data needs to be collected, these results may be one sup-
porting example of delayed stochastic control.

3. Sticky RandomWalk

3.1. Model

Entangled strings is something we commonly observe.
For example, wires for electrical appliances or communi-
cation network cords sometimes require us to disentangle
them. We describe here a concept of sticky random walk
we used to gain some insight into this phenomenon. The
model is simple. The strings are represented by the trajec-
tory of a random walker. This random walker leaves sticks
or marks at certain time intervals. Therefore, a string is
represented by this trajectory with these marks on it. By
sending out multiple sticky random walkers, we obtained
multiple sticky strings. Furthermore, a string is considered
as entangled with another when these marks overlap at the
same site in space, and not when they are simply crossed.
Thus, the string is considered more sticky when there are
more marks on it. We tested a situation having multiple
sticky strings in a bounded two-dimensional square grid by
sending out sticky random walks in this space. These ran-
dom walks are discrete time, discrete space walks moving
one step to its neighboring grid points. They are bounded
by the edge of the square grid. We then pick one string
randomly and count the number of strings either directly or
indirectly entangled to that string. Indirect entanglement
indicates that two strings are entangled through others, i.e.,
two strings can reach each other by following the chain of
directly entangled strings. We performed simulation exper-
iments with various conditions on the number of strings,
the number of marks on each string, the length of each
string, and the size of the two-dimensional square grid. In
particular, we asked the question, if we compare the situ-
ation of having more strings with fewer marks and that of
having fewer strings and more marks, while keeping the to-
tal number of marks in the space constant, which situation
gives rise to more entanglement?

3.2. Simulation Results

We kept the total number of sticky marks R and the
length of each string L as fixed, and we varied the num-
ber of strings S and marks on each string M so that R =
M × S. The number of entangled strings was measured
both in numbersE and in ratio e = E

S . Each part of the data
is an average over 100 trials, with various space for N by
N square grid. The representative results are shown in Fig-
ure 4. We found that an optimal combination of S and M
exists. It is given as the highest peak in these graphs. This
means that these strings are most entangled when the level

of stickiness and the number of strings are optimally tuned.
Even more unexpectedly, this optimal combination is in-
dependent of the space size N for the ratio e. When N is
sufficiently large, it is also independent with respect toE as
well. Though it differs from the standard form of stochastic
resonance, randomness in the motion of the walkers plays
a role in bringing about this resonant behavior. Whether
or not this behavior can happen in a real situation requires
experimental tests.
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Figure 4: Average ratio, e, of entangled strings e as number
of marks on each string is changed. The length of each
string is set at L = 60, and the total number of marks is set
at R = 1800. Each line corresponds to a square lattice size
N .

4. Discussion

We discussed two non-standard models of stochastic res-
onance. As a related subject, a binary bit model that shows
resonance with noise and delay are proposed and studied
[14, 15]. This phenomena was observed in an experiment
with solid state laser [16].
Our investigations here with respect to the resonance

with random walks are still in the beginning stages. How-
ever, they already produced quite unexpected results. Fur-
ther analysis as well as application with real systems could
lead to some additional interesting insights.
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