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Abstract– This paper presents an analysis of the 
nonlinear dynamics of a Charge Pump Phase-Locked Loop. 
The closed-loop circuit is modelled using decision-based 
equations developed by Van Paemel. State space plots; 
bifurcation diagrams and the presence of a chaotic attractor 
all indicate a significant level of underlying nonlinear 
phenomena. A calculation of the fractal dimension of the 
chaotic attractor is performed, and its basin of attraction is 
found through simulations. Finally, the results obtained are 
compared to the results of a previous analysis of a different 
CP-PLL model.  
 
1. Introduction 

 
Phase-lock loops (PLLs) are closed-loop systems with 

negative feedback. The circuit essentially locks onto the 
frequency of an incoming signal and maintains this lock 
by extracting the phase error and aiming to reduce it to 
zero. This circuit is predominantly used in communication 
applications such as frequency synthesis and clock 
recovery. Recent research has seen significant attempts to 
better understand the complicated dynamics of PLLs 
through the application of nonlinear theory [1], [2]. 

The aim of our research is to apply nonlinear dynamical 
techniques to currently implemented PLLs. In most 
frequency synthesis applications, a Charge Pump Phase-
Locked Loop (CP-PLL) is employed. Modelling of this 
circuit is complicated by the charge pump action, which 
essentially makes the circuit time varying. Two main 
techniques have been used to model the CP-PLL The first 
by Gardner [3] essentially averages the phase error output 
to give two equations to model the system. The second 
technique includes the charge-pump action, resulting in a 
set of decision-based equations [4]. 

We have previously examined the nonlinear dynamics 
of the Gardner CP-PLL model in [5]. This paper looks at 
the second approach to modelling the CP-PLL and the 
application of nonlinear dynamic techniques to this model. 
The main analysis techniques include bifurcation 
diagrams, state space plots and examination of basins of 
attraction. Finally, we will compare our findings with the 
results presented in [5]. 
 
2. CP-PLL Circuits and Modelling 
 
2.1. Basic Circuit Layout 
 

The CP-PLL consists of four major blocks, Fig. 1. 

• The phase-frequency detector, which outputs a pulse 
proportional to the detected phase error (pulse 
width, τ). 

• The charge-pump circuit, converting the digital 
signals U and D into a current, which can have three 
discrete values: Ip, -Ip and zero 

• The loop filter, converting the charge-pump current 
into the analog voltage Vcon. (When combined with 
the charge-pump circuit provides integrating zero 
thus leading to zero static phase error, theoretically) 

• The Voltage-Controlled Oscillator (VCO), 
generating an oscillating signal with a frequency 
controlled by the voltage Vcon. 

Figure 1. Block diagram of the CP-PLL circuit. 
 

The circuit aims to match the phase of the incoming 
signal, θi, to the output from the VCO, θo. All four of the 
main circuit blocks have non-idealities, which contribute 
to highly nonlinear behaviour such as frequency spurs, 
phase jitter and cycle slipping. This has lead to increasing 
interest in the underlying dynamics of the CP-PLL. Basic 
models of PLLs have already exhibited well-documented 
nonlinear dynamics such as period-doubling bifurcations, 
limit cycles and restricted basins of attraction [1], [5]. 
 
2.2. Model of the CP-PLL Circuit 
 

The details of this model are presented in [4]; 
essentially it is a decision based set of difference 
equations. The two state variables which fully describe the 
loop operation are v(k) and τ(k): 

 
v(k): This is the voltage stored on the loop filter capacitor 
C, after the opening of the charge pump switches. 

Bruges, Belgium, October 18-21, 2005
Theory and its Applications (NOLTA2005)

2005 International Symposium on Nonlinear

66

mailto:ray.flynn@ee.ucd.ie
mailto:kmistry@ee.ucd.ie
mailto:paul.curran@ucd.ie
mailto:orla.feely@ucd.ie


   

τ(k): This is the phase detector output pulse width. 
The model is flexible enough to incorporate non-

idealities such as charge pump switching delays, input and 
output resistances, nonlinear VCO characteristic, VCO 
overload, frequency dependent phase detection etc. To 
characterize the CP-PLL, four parameters are introduced: 

• Ip: the charge pump current 
• R and C: the loop filter components 
• Kv: the VCO gain, assumed constant 

 
Every period T of the input signal, of frequency fi, both 

state variables are calculated. In this way the state 
variables are updated after a fixed time interval T, 
resulting in a fixed sampling rate equal to the input 
frequency. The loop operation is therefore dependent upon 
the input frequency and the four previously-mentioned 
parameters. The difference equation for v(k) is: 
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The difference equation to calculate τ(k+1) is determined 
by requiring the time interval {T + τ(k+1) - τ(k)} to 
correspond to one period of the VCO output signal, that is 
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The solution of this integral can have four different cases 
depending on the signs of τ(k) and τ(k+1). In addition to 
these four cases, two more are added to account for the 
out-of-lock loop behaviour. This results in an algorithm, 
with decision statements based on the sign and magnitude 
of τ(k) and τ(k+1). 

Temporarily discarding the discrete-time nature of the 
loop, the PLL can be approximated as a continuous-time 
linear feedback system. The second-order PLL can then 
be characterized by its natural frequency Fn and its 
damping factor ζ [4]. These two parameters are defined as 
follows: the natural frequency Fn is given by  
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and the damping factor ζ  is defined as 
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3. Nonlinear Analysis of the CP-PLL Model 

 
3.1. Fixed-Point and Stability of the Model 

 
The fixed point of the model corresponds to 0)( =kτ  

and , where v  is normalised with respect to its 
steady-state value and 

1)( =kv )(k
(k)τ  is normalised to the period T 

of the input signal. Due to the decision-based progression 
of the model it is not possible to analytically determine the 
point at which the system becomes unstable. An 

investigation of this model was carried out in [6], which 
concluded that the sequential nature of the model meant 
that determination of stability was only possible if the 
sequence were known. Using a continuous-time 
approximation, stability margins are however presented in 
[4] and are found to correspond to the results from the 
Gardner paper [3].  
 
3.2. Bifurcation Diagram 
 

For the purposes of analysis, the two continuous-time 
approximated parameters ( )ζ,nF , defined in (3) and (4), 
are used as opposed to using the five circuit parameters 
directly. Stability plots from [4] show that the system 
remains stable over a range of ζ  but goes unstable as Fn is 
increased. The bifurcation diagram, Fig. 2, clearly shows 
that the system remains at its fixed point for Fn < 0.32, 
and as the natural frequency is increased further period 
doubling bifurcations occur. This can be more clearly seen 
in the close-up of the bifurcation diagram, Fig. 3. After the 
period-doubling cascade, the system moves to another 
form of attractor, which is found to be chaotic in nature. 
This will be more closely examined in the next section.  

 
Figure 2. Bifurcation diagram, CP-PLL model, ζ = 0.4. 

 
Figure 3. Close-up of the dashed region of Fig. 2  
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3.3. Chaotic Attractor 
 

For the CP-PLL model, a chaotic attractor, Fig. 4, is 
found to exist over a range of values of natural frequency 
Fn and damping factor ζ. The existence of a chaotic 
attractor in PLL circuits has been previously observed and 
analysed [2]. The apparent fractal nature of the attractor 
can by quantified by a calculation of the correlation 
dimension [7] which was found to be 1.0146. Evaluation 
of the Lyapunov exponents confirms the attractor to be 
chaotic, with one being positive, the other negative.  

 

 
Figure 4. Chaotic attractor (Fn : 0.38 ζ : 0.4). 

 
3.4. Basins of Attraction 
 

The method of nonlinear dynamics used to identify the 
global behaviour of trajectories is the concept of basins of 
attraction. The basin of attraction for a particular attractor 
consists of the set of initial points each of which give rise 
to a trajectory that approaches the attractor. For the fixed 
point of the system, simulations indicate that it is globally 
attracting. The basin of attraction for the fixed point 
therefore corresponds to the entire state space. 

Figure 5. Basin of attraction of period-2 behaviour (white)  
Fn : 0.33 ζ : 0.4 The grey region corresponds to overload 

However, for period-2 behaviour, the basin of attraction 
is found to be restricted, Fig. 5. It is found that trajectories 
not attracted to period-2 correspond to loop overload. This 
situation occurs when the output pulse from the phase 
detector, )(kτ , is too large for the VCO to make the 
necessary adjustments. The model, [4], does allow for the 
occurrence of overload, however there are obviously 
limits to the rate at which the loop can adjust. For the 
chaotic attractor the basin of attraction, Fig. 6, was also 
obtained through simulations. Again, trajectories that do 
not go to the chaotic attractor are found to correspond to 
loop overload. 

 
Figure 6. Basin of attraction (in white) chaotic attractor 

Fn : 0.38 ζ : 0.4 The grey region corresponds to overload 
 

4. Comparison of Results for different CP-PLL Models 
 

Having previously examined the nonlinear dynamics of 
another model of the CP-PLL [3] in [5], it is possible to 
compare and contrast these findings with those of the 
model [4] analysed in this paper. A stability analysis of 
both models gives the same result for the region of 
stability, [4], which is 
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As previously discussed, the essential difference 

between the two models is the representation of the 
charge-pump action. The Gardner model [3] time-
averages this effect resulting in two difference equations. 
An analysis of the nonlinear dynamics of this model was 
carried out in [5]. It was found that the fixed point of this 
model had a restricted basin of attraction, Fig. 7, which is 
fractal in nature. Examination of the equations allowed for 
the onset of period-2 behaviour to be determined. 
However, the period-doubling bifurcation is followed by a 
Hopf bifurcation, Fig. 8. This in turn, resulted in the 
emergence of a disjoint attractor. 
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Figure 7. Basin of attraction (in white) of the fixed point 

for the Gardner CP-PLL model [3]. 
 

Figure 8. Bifurcation diagram of the Gardner CP-PLL 
model [3]. 

 
The model of the CP-PLL examined in this paper, 

presented by Van Paemel in [4], adopted a much different 
technique in its treatment of the charge-pump action. This 
model incorporates the time-varying nature of the charge-
pump circuit, resulting in a set of nonlinear difference 
equations, employing an algorithmic routine to determine 
the next step in the iteration. The bifurcation diagram for 
this model, Fig. 2, clearly shows the existence of a period-
doubling cascade. The fixed point is found by simulations 
to be globally attracting, with a restricted basin existing 
for period-2 and higher order behaviour. For this model, a 
chaotic attractor was also found to exist for a range of 
parameter values. 

The nonlinear dynamics for the two models of the CP-
PLL vary greatly. The models differ in type of bifurcation, 
presence of attractors and in the forms of the basins of 

attraction. In can be concluded for the CP-PLL, that the 
treatment of the charge-pump action in the model, has a 
large effect on the observed nonlinear dynamics of the 
model. 
 
5. Conclusion 
 

The nonlinear dynamics of a model of the CP-PLL 
were investigated. Bifurcation diagrams revealed a period-
doubling cascade, followed by the presence of a chaotic 
attractor. The chaotic attractor in state space was found to 
be fractal in nature. A value for the correlation dimension, 
of the chaotic attractor was calculated and its basin of 
attraction was found by simulations. Finally, a comparison 
was made between the results obtained for this model, and 
results previously presented, using a different model of 
the CP-PLL. It was found that the representation of the 
charge-pump action in the model greatly affected the 
observed nonlinear dynamics. 
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