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Abstract—We find that the regularity in the spiking be-
haviour of a neuronal network maximizes at a certain level
of environment noise. This effect referred to as coherence
resonance is demonstrated in a random complex network
of Rulkov neurons. An external stimulus added to some
of neurons excites them, and then activates other neurons
in the network. The network coherence is also maximized
at the certain stimulus amplitude, coupling strength, and
the number of stimulated neurons. The coherence enhance-
ment is characterized by the normalized standard deviation
from the average inter-spike interval and by the signal-to-
noise ratio calculated from power spectra of the excited
neurons.

1. Introduction

Noise can lead to more order in the dynamics. To be
mentioned here are the effects of noiseinduced order in
chaotic dynamics [1], synchronization by external noise,
and stochastic resonance [2, 3, 4]. Also, noise has been
shown to play a stabilizing role in ensembles of coupled
oscillators and maps [5]. Especially interesting is the phe-
nomenon of stochastic resonance, which appears when a
nonlinear system is simultaneously driven by noise and a
periodic signal. At a certain noise amplitude the periodic
response is maximal.

The interest in mathematical modeling of neuronal syn-
chronization has significantly increased after neurobiolog-
ical experiments with two electrically coupled neurons [6],
where various synchronous states have been identified. In
order to simulate cooperative neuron dynamics, numerous
models based on either iterative maps of differential equa-
tions in various coupling configurations have been devel-
oped [6]. Depending on the coupling strength and synaptic
delay time, coupled neurons generate spike sequences that
are matching in their timings, or bursts either with lag or
anticipation [7]. When three or more oscillators are ac-
counted for, a large number of coupling configurations can
be realized. In the theory of graphs or complex networks,
these basic configurations are called network motifs.

We explore a simple neural model, the Rulkov map
[8, 9]. Although this model is not explicitly inspired by
physiological processes in the membrane, it is capable
of generating extraordinary complexity and quite specific
neural dynamics (silence, periodic spiking, and chaotic
bursting), thus replicating to a great extent most of the ex-
perimentally observed regimes [6], including spike adap-
tation, routes from silence to bursting mediated by sub-
threshold oscillations, emergent bursting, phase and an-
tiphase synchronization with chaos regularization [8], and
complete and burst synchronization.

2. The investigation model

Each neuron-like Rulkov element is described by the fol-
lowing system of equations with synaptic coupling [9]:

xn+1 = f (xn, xn−1, yn + βn), (1)

yn+1 = yn − µ(xn + 1) + µσ + µσn + µAξξn, (2)

where x is a fast variable associated with membrane po-
tential, y is a slow variable which has some analogy with
gating variables, the parameters α, σ and 0 < µ ≤ 1 control
individual dynamics of the system, ξ is a Gaussian noise
with a zero mean and standard deviation that equals 1, Aξ

is noise amplitude. βn andσn are related to external stimuli,
f is a piecewise function defined as

f (xn, xn−1, yn) =



α/(1 − xn) + yn, if xn ≤ 0
α + yn, if 0 < xn < α + yn and

xn−1 ≤ 0
−1, if xn ≥ α + yn or

xn−1 > 0
(3)

It is constructed in a way to reproduce different regimes
of neuron-like activity, such as spiking, bursting and silent
regimes.

The parameters βn and σn are defined as

βn = β
eIext

n + β
synI syn

n , (4)
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σn = σ
eIext

n + σ
synI syn

n . (5)

Coefficients βe and σe are used to balance the effect of ex-
ternal current Iext

n . βsyn and σsyn are coefficients of synaptic
coupling. I syn

n is a synaptic current:

I syn
n+1 = γI

syn
n − gsyn ∗

(xpost
n − xrp), spikepre,

0, otherwise,
(6)

where gsyn is the strength of synaptic coupling, gsyn ≥ 0.
Indexes pre and post correspond presynaptic and postsy-
naptic variables respectively. The first condition in (6) cor-
responds to the presynaptic impulse (spike) generation time
moments and defined as xpre

n ≥ α + ypre
n + β

pre
n . Parameter

γ is a relaxation time of the synapse, 0 ≤ γ ≤ 1. It defines
the part of synaptic current which preserve as in the next
iteration. xrp is a reversal potential that determines the type
of the synapse: inhibitory or excitatory.

In our modeling we take values of the parameters α =
3.65, σ = 0.06 and µ = 0.0005 so that each neuron being
autonomous demonstrates silent regime dynamics. Also we
assume βe = 0.133, σe = 1.0, βsyn = 0.1, σsyn = 0.5 and
xrp = 0.0. Investigation system is a motif of N neurons
coupled to each other with a random coupling strength gsyn

and relaxation time γ. The values of them are randomly
chosen from 0.0 to 0.1 and from 0.0 to 0.5 respectively. In
the investigating system we apply an external stimulus to
Na neurons. Stimulus is a current impulse of the following
form: from the start it equals to 0, at the moment ts when
we apply it current starts equal to A. The values of vari-
ables are chosen so that without the external stimulus each
neuron is in a silent regime but with starting the applica-
tion of stimulus excited neurons start periodically generate
spikes.

3. The analysis

From the system we take signals as time series of fast
variable x from all neurons. Additionally we calculate sig-
nal averaging over all neurons and analyse them. In figure
1 we can see these signals for systems of 100 neurons for
different number of excited neurons. On them we can see
phenomenon of grouping. It consists in periodically spik-
ing unexcited neurons so that we can see areas of time on
time series (d, e, f) where all unexcited neurons spike and
areas where they all are silent and these areas periodically
follows one by one. We can notice that for small and big
values of Na we don’t see grouping.

We analyse influence of amplitudes of external stimulus
and internal noise. In figures 2 and 3 we can see depen-
dencies of time series of x from these parameters. Increas-
ing the stimulus amplitude leads to increasing frequency of
grouping and grouping durations and decreasing time range
between them. Also we can see decreasing oscillation am-
plitude of average signal. Increasing noise amplitude in
its turn leads to decline of grouping effect, signal starts be
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Figure 1: Time series of x variable averaging over all neu-
rons (a), (b), (c) and time series of x variable for all 100
neurons where amplitude x is defined by color (d), (e), (f)
for number of neurons being applying by external stimulus
Na = 1, 10 and 30 respectively, Aξ = 0.1, A = 1.0.

more noise-like. Also we can see oscillations in time area
where external amplitude A = 0 so noise starts excite neu-
rons.
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Figure 2: Time series of x variable averaging over all neu-
rons (a), (b), (c) and time series of x variable for all 100
neurons where amplitude x is defined by color (d), (e), (f)
for values of external stimulus amplitude A = 0.5, 1.5 and
2.5 respectively, Aξ = 0.1. We apply the external effect at
the first 10 neurons, N = 100.

For analyse phenomena of periodical grouping we cal-
culate dependencies of signal-to-noise ration (SNR) from
number of neurons in the system N, number of excited neu-
rons Na, amplitude of external stimulus A and amplitude
of internal noise Aξ. SNR measured from power spectra of
average signal in dB as an excess of main frequency ampli-
tude over background noise [10].

In figure 4, a we can see dependence of SNR from num-
ber of neurons in the system when we excite 10 of them.
At small values of N (<38) signal-to-noise ratio is small
too but for increasing N from 38 leads to rapid increasing
SNR from 5 to 30 and then it stays near of this level until
N = 140 when SNR starts slowly decrease. So for Na = 10
we have optimal values of N = 38 − 140 at which SNR
takes the highest value. In figure 4, b we can see depen-
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Figure 3: Time series of x variable averaging over all neu-
rons (a), (b), (c) and time series of x variable for all 100
neurons where amplitude x is defined by color (d), (e), (f)
for values of noise amplitude Aξ = 0.0, 1.0 and 2.0 respec-
tively, A = 1.0. We apply the external effect at the first 10
neurons, N = 100.

dence of SNR from number of neurons being applying by
external stimulus for system of 100 neurons. We can say
that optimal values of Na are from 4 to 18. For this area
of Na SNR takes the highest values. Moving away from it
signal-to-noise ratio value decreases to 0.
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Figure 4: Signal-noise ratio (SNR) versus number of neu-
rons in the system N (a) for Aξ = 0.1, A = 1.0,Na = 10
and versus number of neurons being applying by external
stimulus Na (b) for Aξ = 0.1, A = 1.0,N = 100.

Figure 5, a shows signal-to-noise ratio dependence from
external stimulus amplitude, on which we can see the phe-
nomenon of coherent resonance when for a certain values
of external stimulus amplitude (A = 1.3 − 1.6) SNR takes
the maximum value. For A > 1.6 signal-to-noise ratio takes
the same value. Decreasing external stimulus amplitude
from 1.3 to 0 leads to decreasing SNR. In figure 5, b we
can see influence of internal noise amplitude to signal-to-
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Figure 5: Signal-noise ratio (SNR) versus external stimulus
amplitude A (a) for Aξ = 0.1,Na = 10,N = 100 and versus
noise amplitude Aξ (b) for A = 1.0,Na = 10,N = 100.

noise ratio. For Aξ = 0.3 SNR takes the maximum value
and decreases to 4 with decreasing Aξ.

To investigate the coherent resonance phenomenon we
plotted the 2-dimensional diagram of SNR from amplitudes
of external stimulus A and noise Aξ (fig. 6) on which we
can see the areas of coherent resonance where SNR values
are high. These areas of parameters are colored by red. We
can see two blue areas (A < 0.2, Aξ < 0.25 and 0.5 < Aξ <
1.0) where signal-to-noise ratio is the lowest. There are 3
red areas for 0.8 < A < 1.7 and 0.0 < Aξ < 1.3. Also we
can see that main area of yellow and red colors is located
for A > 0.5 and Aξ < 2.4. And for A > 1.7 SNR value does
not change for the constant noise amplitude.

We analyse the characteristics of system dynamics such
as synchronization degree and coherence. Synchronization
degree is defined as

S =

√
1

T − t0

∫ T

t=t0
s(t)dt, (7)

s(t) =
1
N

N∑
n=1

[xn(t)]2 −
 1

N

N∑
n=1

xn(t)

2 , (8)

where T is the duration of the time series, t0 is the duration
of transients, N is the number of nodes (n = 1, 2, ...,N).

Coherence is defined as

H =
1
N

N∑
n=1

h2
n −
 1

N

N∑
n=1

hn

2 , (9)

hn =

√√√
1

M − m0 + 1

M∑
m=m0

Rm(n), (10)
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Figure 6: Two-parameter diagram of SNR from amplitudes
of external stimulus A and noise Aξ. SNR amplitude is de-
fined by color.

where Rm is interspike interval (ISI) between m-th and (m+
1)-th spike, M is the number of spikes (m = 1, 2, ...,M), m0
is the number of transient spikes.
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Figure 7: Synchronisation degree (a), (b) and coherence
(c), (d) versus external stimulus amplitude and noise re-
spectively. For figures (a) and (c) Aξ = 0.1, for (b) and (d)
A = 1.0.

On the figure 7 we can see the dependencies of synchro-
nisation degree and coherence from external stimulus am-
plitude and noise. Increasing of A leads to linear increas-
ing of synchronisation degree (fig. 7, a). Coherence at that
time very fast increases and comes to saturation (fig. 7,
c). Increasing of Aξ leads to small linear increasing of syn-
chronisation degree at the amplitude Aξ < 2 and stronger
linear increasing for Aξ > 2 (fig. 7, b) with increasing the
coherence (fig. 7, d).

4. Conclusion

The macroscopic signal from motif of Rulkov ele-
ments with random coupling between them and internal

noise presence under external stimulus demonstrates phe-
nomenon of grouping when all unexcited neurons start
spiking periodically during the time interval. And at the av-
eraging signal from all neurons we see periodically group-
ing. Changing such parameters as number of neurons in
the system, number of excited neurons, amplitudes of ex-
ternal stimulus and internal noise we can see phenomenon
of coherent resonance when at the certain values of these
parameters signal-to-noise ratio takes the maximal values.
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