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Abstract—In this paper, we consider a topology
of complex networks. Recently, a topological property
of such networks called a “small world” has been paid
much attention to. Some models generating the small-
world networks have been proposed. However, they
are some idealized assumptions. We will propose a new
model which is more realistic and show that the model
will generate some kinds of the small-world properties.

1. Introduction

Recently, a topology of many complex networks has
been paid much attention to. A “small world” in-
troduced by Watts and Strogatz is one of topological
properties of the networks[1]. Small-world networks
are highly clustered of regular lattices and have a short
average distance. On the other hand, a “scale free” is
introduced to topological properties by Barabási et al.
[2]. Scale-free networks are characterized by a node
degree distribution that decays as a power low.

In order to classify graphs’ topological proper-
ties, Watts and Strogatz defined two characteristic
quantities[1]: One is an average distance, called a
characteristic path length L, which shows a global
property on the graph. The other is a clustering co-
efficient C, which indicates a local property. They
defined the small-world networks by using C and L.

Some models generating the small-world networks
have been proposed[1, 3, 4, 5]. However, they have
some idealized assumptions, which are merely satisfied
in the real world. In this paper, we will propose a more
realistic model.

This paper is organized as follows: In Sec. 2, we re-
view studies of small-world networks and models gen-
erating them, then we point out issues in the models.
In Sec. 3, we propose a new model. In Sec. 4, we show
simulation results of the proposed model. Finally, in
Sec. 5, we conclude this paper.

2. Reviews of the Small-World Networks

Watts and Strogatz defined two characteristic quan-
tities [1]: a characteristic path length L and a cluster-
ing coefficient C. L is defined by an averaged shortest
path length between all pairs of nodes. C is defined
as follows: Suppose that a node v has kv neighbors.

Then at most kv(kv − 1)/2 edges can exist between
the neighbors. Denoted by Cv is the fraction of these
allowable edges that actually exist. Define C as the
average of Cv over all v.

Consider a graph G with n nodes. A graph Grand is
called a random graph of G if it has the same number
of total nodes and edges as G and it’s edges are wired
at random. By the use of L and C, Watts and Strogatz
defined the small world as follows [3]: n � kmax � 1,
L ≈ Lrand, C � Crand, where Lrand and Crand are
a characteristic path and a clustering coefficient of a
Grand, respectively, and kmax is a maximum number
of each edge in G.

Amaral et al. considered small-world networks from
the viewpoint of a node degree distribution and in-
troduced three classes of small-world networks[6]:
(a) scale-free networks, (b) broad-scale networks, (c)
single-scale networks. A scale-free network is charac-
terized by a node degree distribution that decays as a
power law. A broad-scale network is characterized by
a node degree that has a power law regime followed
by a sharp cutoff. A single-scale network is character-
ized by a node degree distribution with a fast decaying
tail. Amaral et al. considered that such different net-
works result from limitation of adding new edges. Note
that small-world networks are defined by only L and C
though scale-free ones are defined by shape of a node
degree distribution. Therefore, small-world networks
may not be scale free, and vice versa.

Some models generating small-world networks have
been proposed. Watts and Strogatz[1, 3] considered
a ring lattice, which has n nodes arranged at regular
intervals on the ring, with each node connected to its
k nearest neighbors. This graph is called a k-regular
graph. With a probability p, disorder is introduced
into the graph by randomly rewiring each edge. While
the graph remains k-regular at p = 0, a random graph
appears at p = 1. When p lies in the range (0, 1),
small-world graphs are generated. Graphs with a few
short cuts are typical examples of the small world.

Mathias et al. considered physical networks, in par-
ticular neural or transportation networks[4]. They
pointed out that the small world arises from the trade-
off between maximization of connectivity in a graph
and minimization of cost in the physical world. They
considered two kinds of distance: the characteristic
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path length L and a physical distance W . The smaller
L is, the more efficient transmission of the signal, in-
formation, the material, and so on is. On the other
hand, the smaller W is preferable because a wiring
cost of edges will be proportional to the physical dis-
tance. Mathias et al. defined the following trade-off
function E between L and W :

E = λL + (1 − λ)W, (0 ≤ λ ≤ 1). (1)

They also considered a k-regular graph with n nodes.
Each edge is rewired in order to minimize E. While
the graph remains k-regular at λ = 0, a random graph
appears at λ = 1. When λ lies in the range (0, 1),
small-world graphs can be generated.

Davidsen et al. considered social networks, in par-
ticular acquaintanceship[5]. They reported that the
small world appears in local interactions that people
introduces his/her acquaintance to another acquain-
tance. They considered a graph with n nodes. In
the graph, each node indicates a person and an edge
between nodes i and j exists if the persons i and j
know each other. A randomly chosen person picks up
his/her two acquaintances at random and introduces
them to each other. If they have not met before, a
new edge between them is wired. In the case a chosen
person has less than two acquaintances, he/she intro-
duces himself/herself to another person at random. In
addition, with a probability p, a randomly chosen per-
son and his/her all own edges are removed from the
network, then, a new person with one randomly cho-
sen acquaintance is added to the network. After these
steps are iterated, a small-world with a scale-free prop-
erty graph can be generated.

Though such models are theoretically comprehensi-
ble, they have some idealized assumptions. First of all,
it is unnatural that all nodes have been already given.
Many actual networks grow up by adding nodes and
become large scale. Furthermore, as models of Watts
and Strogatz[1, 3] or Davidsen et al.[5], edges will not
be randomly wired. For example, it is said that there
are at least 8 × 108 documents in World Wide Web,
and it is impossible to optimize the whole network like
Mathias et al.[4]. If one wants to add a new node into
the World Wide Web, one cannot obtain information
of all nodes and edges. It is realistic that one wants
to wire a node to nodes such that he/she gets a best
profit based on only local information.

For such reasons, we propose a new model with the
following properties in the next section:

• A considered graph is growing-up by adding new
nodes.

• When the graph grows up, and an added node
uses its local information.

• The wiring problem is formulated as an optimiza-
tion one with respect to the added node.

3. A Proposed Model

In this paper, we propose a new model with the fol-
lowing properties: Consider a circumference of a circle
and divide it into M pieces. Each divided piece is
called a block and can contain at most one node. In
this model, each node is added one by one. An added
node enters a vacant block randomly. The added node
is assigned to a value and a cost bound. When it
is wired to another node, it pays cost based on the
physical distance connecting between the nodes. The
added node chooses a set of nodes to be wired in order
to maximize the sum of values under the limitation of
the assigned cost bound. In addition, a node which
has already existed evolves with a probability p. The
evolved node gets a value and a cost bound further
and is connected with other nodes. We propose the
following model for generating a graph:

1. Definition

• M : Number into which the circumference is
divided.

• N : The number of nodes.

• W : A set of values.

• C: A set of cost bounds.

• p: An evolutional number.

• rand1: A random number in the interval
[0, 1].

2. Main

(a) A new node 1 is added to the graph and gets
a value w1 and a cost bound c1 from W and
C, respectively. The node 1 is randomly as-
signed to a vacant block.

(b) i = 2 : Node number.

(c) while(i ≤ N)

i. if(rand1 < p)
A. A new node i is added to the graph.
B. The node i gets a value wi and a

cost bound ci from W and C, re-
spectively.

C. The node i randomly is assigned to
a vacant block.

D. Calculate each distance between it-
self and a node j (1 ≤ j ≤ i − 1).

E. The node i solves a wiring problem
and gets a set of other nodes to be
wired.

F. The node i is wired to all nodes in
the set and pays a cost correspond-
ing to a sum of the distances.
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G. i := i + 1.
ii. else

A. Pick up a node j at random (1 ≤
j ≤ i − 1).

B. The node j gets a value and a cost
bound further, that is, wj and cj are
reassigned.

C. The node j solves a wiring prob-
lem and gets a set of other nodes
to be wired. However only adding
edges are allowable, that is, remov-
ing edges is not permitted.

D. The node j is wired to all nodes in
the set and pays a cost correspond-
ing to the sum of distances.

3. End

• Output information of edges.

Figure 1 shows an example. A node i’s block number
is defined by xi, and the distance between nodes i and
j is dij = dji = |xi−xj |. If an egde between the nodes
exists, eij = eji = 1 and otherwise eij = eji = 0. A
wiring problem with respect to the added node i(i ≥ 2)
in the main part of the algorithm is equivalent to the
following optimization problem:

Maximize
i−1∑

�=1

ei�w�, (2)

subject to
i−1∑

�=1

ei�di� ≤ ci. (3)

Since an added node i cannot connect a node � such
that di� > ci, the node i does not need to collect infor-
mation of the node �. That is, the node i use informa-
tion of a node j such that di� ≤ ci. Therefore, node i
use local information of itself.

This optimization problem is a 0-1 knapsack prob-
lem that is a famous NP one. Since it is impossible
to solve an optimal solution in realistic time, we de-
rive an approximated solution by using some strate-
gies. We investigate the topological difference among
the obtained solutions derived by each strategy.

We consider four strategies as follows:

• Random Strategy: An added node i picks up
nodes randomly within the range of its cost bound
ci. Since this strategy is based on randomness,
an answer of each optimization problem (2)(3) is
assigned by the best result, which is derived in R
times trial.

• Cost Priority Strategy: An added node i se-
quentially chooses from nearer nodes within the
range of its cost bound ci.
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Figure 1: An example of algorithm.

• Value Priority Strategy: An added node i
sequentially chooses from more valuable nodes
within the range of its cost bound ci.

• Greedy Strategy: An added node i sequentially
chooses from nodes with higher value per distance
within the range of its cost bound ci.

4. Simulation Results

Let M , N , and R be 1000, 3000, and 100, respec-
tively, W and N are uniform distributions from 1 to
10000 and 1 to 2000, respectively, and p is defined as
follows:

p = α
i

N − 1
, (4)

where i is a number of nodes which have already ex-
isted and α is set to be 0.1.

Table 1 and Figs. 2 and 3 show simulation results
by the four different strategies. Table 1 shows that
all graphs obtained by the four strategies have small-
world properties. However, obtained node degree dis-
tributions are different. In Fig. 2, all distribution plots
are averaged over 100 simulations. In particular, dis-
tributions of the random strategy and the value pri-
ority one show scale-free network’s properties though
the other strategies imply single-scale network’s ones.

5. Concluding Remarks

We have proposed a novel growing-up network
model based on local information of an added node.
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(a) Random Strategy.
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(b) Cost Priority Strategy.
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(c) Value Priority Strategy.
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(d) Greedy Strategy.

Figure 2: Node degree distributions.

(a) Random Strategy. (b) Cost Priority Strategy. (c) Value Priority Strategy. (d) Greedy Strategy.

Figure 3: Obtained graphs.

Table 1: Simulation Results.

L C Lrand Crand

Random strategy 5.56 0.0714 3.85 0.00384

Cost priority strategy 7.13 0.670 2.51 0.0168

Value priority strategy 4.64 0.360 6.03 0.000953

Greedy strategy 7.10 0.632 2.60 0.0149

The model partly contains 0-1 knapsack problems,
which are approximately solved by four different
strategies. The numerical results have shown that
two of the strategies produce scale-free networks and
that the others generate single-scale ones. We can get
small-world networks but different strategies can gen-
erate different kinds of the small world.
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