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Abstract—We propose a new autonomous differential
dynamical system with dimension N = 4, whose solution
represents stable two-frequency oscillations. It is shown
that the system realizes a sequence of period doubling bi-
furcations of two-dimensional ergodic tori. It is established
that when the doubling bifrucation takes place, no reso-
nances on a torus are observed and the ergodic torus is dou-
bled.

1. Introduction

The study of bifurcations of quasi-periodic oscillations
and transitions to chaos via their destruction is one of
interesting problems of nonlinear dynamics. There are
well-known mechanisms, such as the Landau–Hopf sce-
nario [1, 2], the Ruelle–Takens scenario [3, 4], and the
Afraimovich–Shilnikov scenario [5], that describe the de-
tails of transitions to chaos through multi-frequency oscil-
lations. This problem is analysed in many works where a
wide class of real and model dynamical systems are used
[6]. With this, regimes of quasi-periodic oscillations are
most frequently observed in periodically driven discrete-
time and differential systems.

It seems to be quite interesting to develop the simplest
autonomous differential system that can generate a solu-
tion in the form of stable two-frequency oscillations and
demonstrate the basic bifurcation mechanisms of their de-
struction including period doubling bifurcations. In spite
of the fact that the two-dimensional torus doubling was
discovered many years ago [7, 8, 9], the details of the bi-
furcation mechanism of ergodic torus doubling still remain
unclear up to now.

A two-dimensional torus can be realized in a three-
dimensional autonomous dissipative system as it has been
shown, for example, in [10]. However, the implementation
of torus doubling bifurcation requires the system dimen-
sion to increase to N ≥ 4.

In the present paper we propose the simplest autonomous
dynamical system with dimension N = 4 that can realize
the regime of a stable two-dimensional torus and demon-
strate torus doubling bifurcations as well as transitions to
chaos via torus breakdown. The proposed model is used
to examine certain details of the bifurcation mechanism of
two-dimensional torus doubling.

2. Model of the Oscillator

As an initial system, we consider the known model of
Anishchenko–Astakhov’s oscillator [11] that reads:

ẋ = mx + y − xz − dx3,

ẏ = −x, (1)

ż = −gz + gΦ(x).

The first two equations of system (1) describe the Van
der Pol oscillator. The third equation of system (1) rep-
resents an inertial cascade of additional feedback that in-
cludes a nonlinear convertor Φ(x) being given by a func-
tion in the form (exp(x) − 1) or I(x)x2, where I(x) = 1 for
x > 0 and I(x) = 0 for x ≤ 0. The presence of inertial
feedback serves as the major reason for appearing chaotic
oscillations.

To achieve the formulated purpose, we change the iner-
tial cascade of additional feedback that causes the dimen-
sion of the equations to increase:

ż = ϕ,

ϕ̇ = −γϕ + γΦ(x) − gz. (2)

Here, γ is the parameter of damping of the new filter, and
g is the parameter characterizing its inertia. Equations (2)
represent the equation of a dissipative circuit in the regime
of forced oscillations:

z̈ + γż + gz = γΦ(x). (3)

As our investigations have shown, the regime of undamped
autonomous oscillations can be obtained if the derivative
ż(t) = ϕ(t) is used instead of the controlling signal z(t) (see
Eq. (1)). In this case the equations of a new oscillator can
be written down as follows:

ẋ = mx + y − xϕ − dx3
,

ẏ = −x, (4)

ż = ϕ,

ϕ̇ = −γϕ + γΦ(x) − gz.

System (4) is a nonlinear dissipative dynamical system
of dimension N = 4 and is characterized by four controlling
parameters. They are m being the parameter of excitation,
d being the parameter of nonlinear dissipation, γ being the
parameter of damping, and g being the parameter of filter
inertia.
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3. Numerical simulation

It has been numerically established that system (4) can
realize the regime of a stable two-dimensional torus, a torus
doubling bifurcation and torus breakdown with the transi-
tion to chaos. Besides, for small values of the parameter g
(when system (4) is similar to system (1)) , system (4) can
demonstrate period doubling bifurcations of limit cycles
and the transition to chaos as in Anishchenko–Astakhov’s
oscillator.

Figure 1,a shows the bifurcation diagram of system (4)
modes on the plane of the controlling parameters m and g
for fixed values γ = 0.2 and d = 0.001. The function Φ(x)
is defined in the form I(x)x2.
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Figure 1: (a) Bifurcation diagram of regimes in system (4)
for γ = 0.2 and d = 0.001. l1,2 are cycle period doubling
bifurcation lines, lt is the torus birth line, lu is the torus
breakdown line, lc is the chaotic attractor destruction line,
lr are the lines bounding the resonance 1 : 4 region on a
torus, ldc are the multiple cycle lines, and A is a codimen-
sion 2 point corresponding to the condition φ = 1 : 4. (b)
Dependence of the Lyapunov exponent spectrum on m at
d = 0.001, γ = 0.2, and g = 0.5 within the parameter range
between lines lt and lu. B, C and D are the bifurcation
points of torus period doubling

According to the Andronov–Hopf bifurcation, a stable
limit cycle T0 is born on the line m = 0 and undergoes
the period doubling bifurcation when crossing the bifurca-
tion line l1. On the curve l2 the period doubling bifurcation
is realized for the cycle that has appeared on the line l1

(Fig. 1,a). The bifurcation line lt corresponds to the con-
dition when a pair of complex-conjugate multipliers of the
cycle T0 go out to the unit circle and a two-dimensional
torus is softly born (µ1,2 = exp(±jφ)). Naturally, when
moving along the line lt the angle φ will run a range of
rational values that correspond to resonances on the torus.
Figure 1,a exemplifies the resonance φ = 1 : 4 region that
is bounded by the lines lr and based on the point A of codi-
mension 2. Above the torus birth line there exists the line
lu. When crossing lu from the bottom upwards, the transi-
tion to chaos is observed via destruction of quasi-periodic
oscillations. The chaotic attractor that has appeared on the
line lu undergoes a crisis on the line lc. The line ldc cor-
responds to the bifurcation of merging and of consequent
disappearance of a pair of saddle cycles. The bifurcation of
two-dimensional torus period doubling can be observed in
the region located between the lines lt and lu.

Now we fix g = 0.5, d = 0.001 and γ = 0.2 and con-
sider the evolution of the torus regime in the parameter m
range between the indicated lines lt and lu. Figure 2 demon-
strates projections of attractors on the plane at the bifurca-
tion points of the two-dimensional torus period doubling.
The torus period doubling can be clearly recognized by the
structure of the Poincare section as well as by analysing
time series and their power spectra. In this case the torus
period doubling bifurcation is defined as a modulation pe-
riod doubling bifurcation (or a cycle period doubling bifur-
cation in the Poincare section).

From a viewpoint of the theory of bifurcations, it is quite
important to answer the following question. Is an ergodic
torus doubled or near the bifurcation point, first we observe
a resonance on a torus and then period doubling of the res-
onant cycle from that a doubled torus is arised? To get the
answer, we calculate a full spectrum of Lyapunov expo-
nents at the bifurcation points, that is shown in Fig. 1,b.

As can be seen from Fig. 1,b, at the bifurcation points
B, C and D three largest Lyapunov exponents become zero
(Λ1 = Λ2 = Λ3 = 0). The bifurcational transition is charac-
terized by the following change of the Lyapunov exponent
spectrum signature:

0, 0,−,− =⇒ 0, 0, 0,− =⇒ 0, 0,−,−
torus2 torus3 torus2

The calculations were performed with a very small step
on the parameter m (∆m = 3×10−6) and testify that no limit
cycle birth is observed when passing through the bifurca-
tion point (the Lyapunov exponent spectrum is 0,–,–,–). At
the bifurcation point we deal with a structurally unstable
three-dimensional torus that gives rise to a stable doubled
ergodic two-dimensional torus. Thus, the presented find-
ings confirm once again the results described in [12] where
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Figure 2: Projections of attractors in system (4) and of the
corresponding Poincare sections on the plane for different
values of the parameter m. The other parameters are d =
0.001, γ = 0.2 and g = 0.5

this conclusion was first made. The ergodic torus under-
goes the period doubling bifurcation and no resonant cycles
have been detected in numeric simulation.

Hence the new dynamical system (4) introduced in this
paper really includes the possibility of realizing a sta-
ble regime of ergodic two-frequency oscillations (the two-
dimensional torus mode) and demonstrates modulation pe-
riod doubling bifurcations (two-dimensional torus period
doubling). The proposed autonomous system (4) is the
simplest one to explore bifurcations of quasi-periodic os-
cillations with two independent frequencies. The detailed
analysis of the observed phenomena was not an objective
of the current work but will be done in near future.
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