
Parallel Computing of Neural Network Algorithm for Fixed Channel
Assignment Problem in Cellular Radio Networks with CUDA

Sho Ikeda, Yoichi Tomioka and Junji Kitamichi

†Graduate School of Computer Science and Engineering, The University of Aizu
Aizuwakamatsu, Fukushima, 965-8580, JAPAN

Email: m5211129@u-aizu.ac.jp, ytomioka@u-aizu.ac.jp and kitamiti@u-aizu.ac.jp

Abstract—In recent years, graphics processing units
(GPUs) have been used for faster numerical calculation be-
cause they have many processing elements and can calcu-
late via parallel computing. More recently, there is a grow-
ing interest in parallel computing using a general-purpose
GPU (GPGPU) in the field of neural network algorithms.
In this paper, we propose a CUDA C program that aims
to accelerate an extended maximum neural network algo-
rithm for a fixed channel assignment problem in cellular
radio networks using GPGPU. CUDA C runs on NVIDIA
GPU for faster processing speed. We evaluate the devel-
oped program with the existing benchmark problem in the
fixed channel assignment. Results show that the processing
speed of the developed program is 2.4 times to 15.1 times
faster than in the case of using only CPU.

1. Introduction

There is a growing demand for mobile devices using cel-
lular radio networks (CRNs). However, the limited number
of frequency bands and channels are available. Therefore,
much research has been conducted to solve the channel as-
signment problem (CAP). To resolve the CAP, certain num-
ber of demanded channels must be efficiently assigned to
cells without mutual interference. The CAP is one of the
NP-complete problems that cannot be solved in polynomial
time, and many researchers have studied approximation al-
gorithms to solve it. For example, Box [1] proposed to
assign channels in descending order of demand difficulty,
Sivarajan [9] viewed CAP as a graph-coloring problem,
Funabiki [3] proposed a neural network algorithm for the
CAP, and so on. Because the neural network algorithm is
also parallel distributed processing, it is suitable for par-
allel computing using a multi-core processor. In this pa-
per, we propose a parallel computing algorithm using GPU.
Our aim is to accelerate the processing speed based on an
expanded neural network algorithm proposed by Ikenaga
and his colleagues [4] [5]. We develop a program for the
fixed CAP using CUDA C programming that is a parallel
computing platform and programming model for GPU by
NVIDIA. Results show that the processing speed of the de-
veloped program is 2.4 times to 15.1 times faster than in
the case of using only a CPU.

2. Background

2.1. Channel Assignment Problem

In this research, we treat a frequency allocation in cellu-
lar radio networks as a channel assignment problem (CAP).
The frequencies we use for communication are called chan-
nels. Cellular radio networks consist of base transceiver
stations (BTSs) and users. Users can communicate with
other people because a BTS assigns an available channel to
a mobile terminal. A cell is hexagonal area divided into a
broad service area and has one BTS. The amount of inter-
ference is quantified in terms of the three conditions using
Smith’s formalization [10]. Three conditions are as fol-
lows:

1. Common channel constraint: The same channel can
not be assigned to a certain pair of radio cells at the
same time.

2. Adjacent channel constraint: Adjacent channels in the
frequency domain can not be assigned to adjacent ra-
dio cells at the same time.

3. Common cells constraint: Any pair of frequencies as-
signed to a single radio cell must keep a certain dis-
tance from each other in the frequency domain.

The goal of solving the CAP is to assign the channel in a
way that the sum of the mutual interference amounts be-
comes 0. The amount of interference is defined as the in-
terference matrix E obtained from a symmetric compati-
bility matrix C. The number of channel requirements for
each cell is defined as the demand matrix D. Assuming
that there are N cells and M channels available, the matrix
E is expressed three-dimensionally as N × N × M. ei jk is
an element of matrix E, and it is the amount of interference
when channels assign to cell i and cell j with the distance
between the channels being k as shown in formula (1). di
is an element of matrix D and is the number of channels
demanded for cell i. Figure 1 is an example of the result of
the CAP. In this example, there are 4 cells and each cell has
11 channels. In addition, formula (2) represents matrix D
and matrix C. Then, formula (3) is calculated from matrix
C. In Figure 1, gray circles indicate channels assigned to a
mobile terminal, and the total interference is 0.

ei jk =

{
0 (i f ci j ≤ k)
ci j − k (i f ci j > k) (1)

- 720 -

2017 International Symposium on Nonlinear Theory and Its Applications,

NOLTA2017, Cancun, Mexico, December 4-7, 2017

D =

2
1
3
2

 C =

5 4 0 0
4 5 0 1
0 0 5 2
0 1 2 5

 (2)

ei j1 =

4 3 0 0
3 4 0 0
0 0 4 1
0 0 1 4

 ei j2 =

3 2 0 0
2 3 0 0
0 0 3 0
0 0 0 3

 (3)

Figure 1: Example of Channel Assignment Result

2.2. Neural Network Algorithm

We adopt an extended maximum neural network
algorithm (EMNNA) proposed by Ikenaga and his
colleagues [4] [5] which is based on Hopfield Neural
Network. A two-dimensional N × M matrix defines the
neuron representation, and the i j neuron corresponds to
element i j of this matrix. Here, i corresponds to a cell i
and j corresponds to a channel j. The neuron input has
an integer of Ui j and the neuron output has a binary value
Vi j. Vi j = 0 means that there is no assigned channel,
and Vi j = 1 means that there is an assigned channel. All
neurons are grouped for each cell, and di neurons are
selected for cell i. In formula (4), Uith is the ith-th largest
number when Ui j are sorted by descending order in cell
i. If the number of neurons satisfies Ui j ≥ Uith is more
than di, the neuron that is 0 at the last time is given the
priority [5].

Vi j =

{
1 (i f Ui j ≥ Uith)
0 (otherwise) (4)

The energy E of entire network is defined by formula
(5). V is the result of assigned channel when this function
has the minimum value. This EMNNA is added some
heuristic methods to improve the accuracy of solution.
Therefore, the neuron input values are updated by formulas
(6) and (7). Formula (6) is added Shaking Term, Omega
function and Hill-Climbing Term. In addition, regular
interval assignment and re-initialization method are used
in this algorithm. Regular interval assignment assigns a
channel for a regular interval to cell i that has the greatest
di. The re-initialization method realizes large hill climbing
by initializing input Ui j again.

E =
A
2

N∑
i=1

M∑
j=1

N∑
p=1

M∑
q=1

(i, j),(p,q)

eip| j−q|Vi jVpq (5)

dUi j

dt
=

∂E
∂Vi j

= − A
N∑

p=1

M∑
q=1

(i, j),(p,q)

eip| j−q|Vpq

(i f (t mod Tω ≥ ω))

− A
N∑

p=1

M∑
q=1

(i, j),(p,q)

eip| j−q|VpqVi j

(i f (t mod Tω < ω))

+ Bh(
N∑

p=1,
p,i

M∑
q=1

e| j−q|Vpq)

+ C(1 − Vi j) (6)

Ui j new =
dUi j

dt
+ Ui j old (7)

If
∑N

p=1,
p,i

∑M
q=1 e| j−q|Vpq is 0, then function h is 1, otherwise,

function h is 0.

2.3. GPGPU

A GPU is a microprocessor calculating 2D or 3D graph-
ics, videos, and images. A modern GPU is a multi-thread
multi-processor for faster calculation, and there is a grow-
ing interest in GPU computing. A GPU and CUDA have
been developed by NVIDIA [6]. CUDA allows us to use
the CUDA acceleration library, compiler directives, appli-
cation programming interface, and an extended program-
ming language such as C, C++, Fortran, or Python. CUDA
C is based on ANSI C. Its program is composed of host
code executed on a CPU and device code executed on a
GPU.

A GPU by NVIDIA is designed with CUDA architec-
ture. Second-generation Maxwell is one of the CUDA ar-
chitecture, and we adopt it in this research. Maxwell′s
characteristic feature is the structure of its multi-processor.
Its streaming multi-processor, known as SMM, is com-
posed of four 32-core processing blocks. Therefore its
performance per CUDA core is higher than 40% because
of new data path organization and an improved instruction
scheduler [8]. GTX960 has 1024 CUDA cores and 2 GB
global memory. In addition, it is powered by 1127 MHz
base clock and 112 GB/sec memory band width. In CUDA
C programming with GTX960, maximum number of resi-
dent grids per device is 32, maximum x-dimension of a grid
of thread blocks is 231−1 and maximum number of threads
per blocks is 1024.

3. Proposed CUDA Program

We parallelize the EMNNA. We code a base program to
do the following:

1. Execute on setting initialization
2. Initialize input value of Ui j

3. Obtain output value of Vi j by the MNNA- 721 -

4. Calculate of total mutual interference using energy
function

5. Update Ui j by motion equation
6. Repeat from Step3 to Step5 until the total mutual in-

terference is 0 or the update number reaches a fixed
time.

7. Assign channel where Vi j is 1.

In this program, Step3, Step4, and Step5 need to be re-
peated many times for calculation. In addition, they are
easy to parallelize beacause each neuron is calculated inde-
pendently. Therefore, we introduce parallel techniques us-
ing CUDA for each step to accelerate the processing speed.

3.1. Introduction of CUDA C programming

We describe a parallel computing method for determin-
ing the output of each neuron corresponding to Step3,
derivation of the total interference corresponding to Step4
and updating each neuron input Ui j corresponding to Step5
of the original program.

In Step3, we treat one thread as each cell. Therefore,
we use one block and it has cell threads. Neurons of the
same cell are treated as the same group. Each thread de-
termines the output of neurons from the inuput of neurons
based on neuron representation and allocates a channel. In
a EMNNA, one neuron has a relationship with the value of
other channels in the same cell. Therefore, it can not be
processed independently. Figure 2 shows the deployment
diagram of blocks and threads. The number of blocks is
one and the number of threads per block is N. Therefore,
we realize 1×N parallelization. A thread calculates V at the
i-th cell. For example, when blockID is 0 and threadID is
N − 1, the thread calculates VN j. In other words, the thread
assigns demand channels to the N-th cell.

In Step4, we treat one block as one cell and one thread
in the block as one channel. Therefore, a neuron out-
put corresponds to the threadID-th channel assignment in
the blockID-th cell. Each thread calculates the amount
of interference between ouput neurons. Figure 3 shows
a corresponding diagram of blocks and threads. The
number of block is N and the number of threads per
block is M. Therefore, we realize N × M paralleliza-
tion. A thread calculates

∑N
p=1
∑M

q=1(i, j),(p,q) eip| j−q|Vi jVpq
at the i-th cell and j-th channel. For example, when
blockID is N − 1 and threadID is M − 1, the thread cal-
culates

∑N
p=1
∑M

q=1(N,M),(p,q) eN p|M−q|VNMVpq. After calcu-
lating that, the calculated results are summed up.

In Step5, we treat one block as one cell and one thread in
the block as one channel. Therefore, a neuron corresponds
to the threadID-th channel in the blockID-th cell. Each
thread changes the state of the neuron according to the mo-
tion equation. Figure 4 shows a deployment diagram of
blocks and threads. The number of blocks is N, and the
number of threads per block is M. Therefore, we realize
N × M parallelization. A thread calculates U at i-th cell
and j-th channel. For example, when blockID is N − 1 and
threadID is M − 1, the thread calculates dUNM

dt and updates
UNM .

Figure 2: Deployment Diagram Determining Output of Neuron

Figure 3: Derivation of the Total Interference

Figure 4: Updating Input of Neuron

4. Evaluation through Simulation

4.1. Benchmark Set

We provide simulation for the problems in reference [2]
to compare the proposed program using CUDA and the
program using C language. Table 1 shows the details of
the problems. Prob is the number to identify the problem.
N is the number of BTSs, and M is the number of channels
per BTSs. Cii is the amount of interference in the same
cells. a.c.c. refers to the amount of interference in adjacent
cells. Total indicates the total number of required channels,
Max is the maximum number of required channels and Min
is the minimum number of required channels.

4.2. Results of Execution

Table 2 shows the execution results, comparing using
only a CPU with using a CPU and GPU. The program exe-
cution environments are GeForce GTX960 as the GPU, In-
tel Corei5-4570S (2.9GHz) as the CPU, CUDA Compiler
Driver ver.7.5.17 as a compiler for the GPU, and GCC ver.
4.4.7 using option -O2 as compiler for the CPU. We simu-- 722 -

late the developed program 10 times for each problem. In
the CPU only, we execute a base program written in C lan-
guage with OpenMP. In the CPU+GPU, we add CUDA to
the base program and execute them using CUDA on a CPU
and GPU. We use the systemcall gettimeofday() for time
measurement. In Table 2, Ave is the average execution time
of 10 simulations, and Min is the minimum execution time
of them. In Prob 1 and Prob 2, execution times using a
GPU are much longer than when using only a CPU. How-
ever, the processing speed when using a GPU is up to from
2.4 times to 15.1 times faster than in Prob 3,4,5,6,7,and
8. We profile the result of Prob 4 using nvprof. nvprof is
a profiling application that can be used on the command-
line from CUDA 5.0 [7]. In one simulation, the updating
time is 81, the final total interference is 0 and the execution
time is 1243.93 ms. Table 3 shows profiling results then.
Time is the total execution times and Ratio(%) is the rate of
them. Ave is the average kernel time per execution and Min
is the minimum time of it. memory copy to CPU is the
memory copy from GPU memory to CPU main memory.
memory copy to GPU is the memory copy from CPU main
memory to GPU memory. From this result, it is clear that
”Derivation of Total Interference” and ”Updating Input of
Neuron” occupy a lot of time. Therefore, if we were to fur-
ther reduce the execution time, these processes would be
important.

Table 1: Benchmark Problems
Matrix C Vector D

Prob N M Cii a.c.c. Total Max Min
1 4 11 5 - 6 3 1
2 25 73 2 - 167 11 4
3 21 381 5 1 481 77 8
4 21 533 7 1 481 77 8
5 21 533 7 2 481 77 8
6 21 221 5 1 470 45 5
7 21 309 7 1 470 45 5
8 21 309 7 2 470 45 5

Table 2: Execution Time
CPU CPU+GPU

Prob Ave[s] Min[s] Ave[s] Min[s]
1 2.901 0.118 0.05450 0.05308
2 0.5049 0.3012 0.5258 0.3727
3 7.742 5.373 0.6042 0.5313
4 16.72 12.177 1.252 0.6517
5 16.39 13.815 1.086 0.9113
6 4.377 3.199 1.847 0.8970
7 10.25 4.704 2.904 2.902
8 12.93 3.029 2.899 2.898

Table 3: Profiling Results of Execution Time
Name Ratio(%) Time[ms] Ave[ms]

Derivation of Total Interference 54.36 600.64 7.4153 [ms]
Updating Input of Neuron 40.89 451.75 5.5772 [ms]

Determining Output of Neuron 4.52 49.912 0.6162 [ms]
memory copy to CPU 0.13 1.3963 5.7450 [µs]
memory copy to GPU 0.11 1.2241 3.7660 [µs]

5. Conclusion
We propose a high-speed parallel program by CUDA.

The proposed CUDA program uses an extended maximum
neural network algorithm for the fixed channel assignment
problem in cellular radio networks. This program is shown
to accelerate the processing speed from 2.4 times to 15.1
times faster by CUDA programing using a NVIDIA GPU
for the problem that needs a lot of time. The results show
that it is more effective to introduce parallel computing by
GPGPU to a neural network algorithm for a large-scale
channel assignment problem.

In future work, we will apply a GPGPU not only to the
fixed channel assignment problem but also to the dynamic
channel assignment problem and show that program using
GPGPU is also effective for solving the dynamic channel
assignment Problem.

References

[1] F. Box, “A heuristic technique for assigning frequen-
cies to mobile radio nets,” IEEE Transactions on Ve-
hicular Technology, vol. 27, no. 2, pp. 57–64, 1978.

[2] R.-H. Cheng, C.-W. Yu, and T.-K. Wu, “A novel
approach to the fixed channel assignment prob-
lem,” Journal of information science and engineering,
vol. 21, no. 1, pp. 39–58, 2005.

[3] N. Funabiki and Y. Takefuji, “A neural network paral-
lel algorithm for channel assignment problems in cel-
lular radio networks,” IEEE transactions on Vehicular
technology, vol. 41, no. 4, pp. 430–437, 1992.

[4] K.Ikenaga, N.Funabiki, Y.Takenaka and J.Kitamichi,
“An expanded maximum neural network algorithm
for a channel assignment problem in cellular ra-
dio networks,” IEICE Technical Report NLP, vol. 97,
no. 592, pp. 85–92, Mar 1998.

[5] K.Ikengaga, N.Funabiki and Y.Takenaka, “An ex-
panded maximum neural network algorithm for a
channel assignment problem in cellular radio net-
works,” IEICE Trans. Fundamentals A, vol. 82, no. 5,
pp. 683–690, May 1999.

[6] NVIDIA Corporation, “Cuda c programming
guide,” (http://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html).

[7] NVIDIA Corporation, “Nvidia cuda toolkit 8.0,”
(http://docs.nvidia.com/cuda/pdf/CUDA_
Toolkit_Release_Notes.pdf).

[8] NVIDIA Corporation, “Whitepaper nvidia geforce
gtx980,” (http://international.download.
nvidia.com/geforce-com/international/
pdfs/GeForce_GTX_980_Whitepaper_FINAL.
PDF).

[9] K. N. Sivarajan, R. J. McEliece, and J. W. Ketchum,
“Channel assignment in cellular radio,” Vehicular
Technology Conference, 1989, IEEE 39th, pp. 846–
850, IEEE, 1989.

[10] K. Smith and M. Palaniswami, “Static and dynamic
channel assignment using neural networks,” IEEE
Journal on selected areas in communications, vol. 15,
no. 2, pp. 238–249, 1997.

- 723 -

