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Abstract–The behaviour of the first-order Sigma-Delta 

(Σ∆) modulator with integrator leakage, a common circuit 
imperfection is investigated using methods of nonlinear 
dynamics. Both continuous and discrete time modulators 
are considered. The results found provide information 
about the size of the internal variables in steady state, and 
also about the specific behaviour of those variables. 

   
1. Introduction 
 

 Sigma-delta (Σ∆) modulators are widely used for 
analogue-to-digital and digital-to-analogue conversion in 
both discrete-time and continuous-time implementations 
[1].  A Σ∆ modulator is an example of a nonlinear system, 
the nonlinearity being introduced by the presence of the 
quantiser.  In [2] we applied results of our work on driven 
interval shifts to explain the steady-state dynamics of the 
first-order ideal discrete-time Σ∆ modulator whose input 
is a sampled periodic signal. In [3] the Σ∆ modulator with 
integrator leakage, a common circuit imperfection, was 
explored. In particular, it was found that under certain 
conditions the trajectories tend in the limit to lie on two 
continuous curves. 
  In this paper, an explicit formula for these curves with 
any periodic input is determined.  We will begin by 
reviewing some of our previous results. In section 3, the 
new algorithm is presented and then applied to the case of 
sinusoidal input and a triangular wave input. Finally, the 
effect of the integrator leakage on the thickness of the 
limit set [2] is examined. 
 
2.  The Sigma-Delta Modulator 
 
2.1. Σ∆ Modulators 
 

Fig. 1 shows the basic first-order Σ∆ modulator in both 
(a) discrete- and (b) continuous-time implementations. 
Ideal discrete-time and continuous-time modulators are 
obtained by setting  p = 1 and a = 0 respectively. 
The system in Fig.1 (a) is modelled by the piecewise-
linear equation  

)(sgn11 nnnn uxpuu −+= ++   (1) 
where sgn(un) = 1 when un  ≥ 0 and –1 when un  < 0.  

In the ideal continuous-time sigma-delta modulator, i.e. 
the system of Fig. 1(b) with a = 0, the quantizer samples 
the signal ( )tu  with period T.  This system is described by 
the equation: 

T1ntnTnTutx
dt

tdu )(for))((sgn)()( +<≤−=  

Integrating between nT and (n+1)T and scaling by T gives 
the equation   
 )(sgn11 nnnn uxuu −+= ++  (2) 
where  
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Eq. (2) is of the form (1), and so our analysis of the 
dynamics of (1) will apply to both the discrete- and 
continuous-time modulators.   
The non-ideal continuous-time system can also be 
modelled by an equation of this form, proceeding as 
before by integrating over a time-step and changing 
variables, with p = e–aT. 
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Figure 1 (a) Discrete-time first-order Σ∆ modulator. 
(b) Continuous-time first-order Σ∆ modulator. 

 
Eq. (1) can be converted to autonomous form, when xn is 
the sampled version of a periodic signal f of frequency ω, 
and this gives the 2D mapping: 
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2.2 Nonlinear Dynamics of Ideal (Σ∆) Modulators. 
 

The limit behaviour of the mapping in (3) with p=1 
was studied in [2]. In this case, it was found that: 

If 1)(
2
1

2

0

<∫
π

θθ
π

df  then there exists a belt 

)}()(),({ θθθ UuLuB <≤=  of constant thickness  
U(θ) – L(θ) = 2  that absorbs all trajectories of (3) and is 
invariant.  If | f(q) | < 1 for all q, the belt is bounded by the 
curves   
 1)(1 +=+ θfC  and 1)(1 −=− θfC  (4) 

Otherwise the boundaries consist of a finite number 
of the critical curves [4] given by  

−+
11 , C C , 

)( 1
++ = -nn CFC  and )( 1

−− = -nn CFC  for n ≥ 2. 

 
(5) 

In [3], the effect of including integrator leakage into the 
map in (3), i.e. p < 1 case, on the dynamics was 
investigated. The dynamics were found to be qualitatively 
different from those of the ideal case. In this paper, the 
limit behaviour of this mapping for p < 1 is investigated 
further. 
 
3. Nonlinear Dynamics of Non-Ideal (Σ∆) Modulator. 
 

Firstly, it was found that the belt 
}1)(1)(),({1 +<≤−= θθθ fufuB  bounded by +

1C  and 
−
1C  from (4) is invariant with respect to the mapping (3) 

under the following condition:  
| f(q ) | < 2/p – 1 for all q  

However, the belt B1 is no longer mapped onto itself by F 
when p < 1.  For values of θ such that | f(q ) | < 1, its 
section )1)(,1)([)(1 +−= θθθ ffB  maps to two intervals 
of combined length 2p separated by a gap of length 2 – 
2p.  For values of θ such that 1 < | f(q ) | < 2/p – 1, B1(θ ) 
does not contain 0 and thus maps to a single interval of 
length 2p. It is easy to see that this pattern continues, and 
after k iterations the interval B1(θ ) maps to m interval 
components within B1(θ + kω), for some 1 ≤ m ≤ k, of 
combined length 2pk (on every step, if an iterate of B1(θ ) 
contains 0, then its image gets one extra component).  
Since p < 1, it is clear that this combined length tends to 0 
as the number of iterations tends to infinity, and so the 
limit set (which is rigorously defined as the intersection of 
the closures of consecutive iterates of the belt) where 
trajectories reside in steady state has measure zero within 
the belt B1.  It is also clear that the boundary points of the 
interval components at any stage of the iteration process 
lie on the critical curves +

nC  and −
nC  defined in (5). 

 

3.1 The Limiting Curves. 
 

The main result in [3] which is of interest in this paper 
is that for the case of pfpf −≤++ 1|)()(| ωθθ  for all θ, 
the iteration of B1 produces in the limit two continuous 
curves. A trajectory of (3) is shown in steady-state in Fig. 
2(b). Note how the trajectory lies on the curves from Fig. 
2(b).  The dynamics are quite straightforward: with each 
iteration the trajectory moves to the right by a distance ω, 
bouncing between the curves. In this section, an explicit 
formula for these limit curves is determined. 

 
(a) 

 
(b) 

    
Figure 2  (a) The belt B1 bounded by Acosθ ± 1   (b) The 
limit obtained as the number of iterations of B1 tends to 

infinity.   A = 0.5, p = 0.332 and ω =p /32.A  trajectory of 
(3) is plotted jumping between the limit curves. 

 
3.1.1 The equations of the limit curves 
 
Consider any periodic input ( )θf which can be expressed 
in terms of its Fourier series as follows: 

( ) ( ) ( )∑∑
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Now the continuous curves on which the trajectory lies 
can be described as: 
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We will proceed by analysing the case of ( )θUC . 
Consider the upper limit curve: 
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Using the following trigonometric identities 
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From (3), 
 ( ) ( ) ( ) 122 ++++=+ ωθωθωθ fpCC UU  
 
which in turn gives 

( ) ( ) ( ) ( ) 122 2 +−++++=+ pfpfCpC UU ωθωθθωθ  
Now substituting for ( )θf and ( )θUC  gives the 
following: 

( ) ( ) ( )

( ) ( )

( ) ( ) 12sin2cos

sincos

sincos2

11

1 1

1 1

2

+−+++

++









++++

+









++=+

∑∑

∑ ∑

∑ ∑

∞

=

∞

=

∞

=

∞

=

∞

=

∞

=

pnnbnna

knnbnnakp

nbnakpC

n
nf

n
nf

f
n n

fnff

n n
nUnUUU

ωθωθ

ωθωθ

θθωθ

 

 
Again using the trigonometric identities given above,  
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Equation (6) and (8) must be equal. Firstly, the constant 
term Uk can be determined easily. 
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For each n, it can be seen that 
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3.2.  A sinusoidal input. 
 

Consider the case of ( ) θθ cosAf = . This is the 
simplest case where ,,0 1 Aak ff == 0=fna for 

1>n 0=fnb for all n. 
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Then by (8) 
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Figure 3   The continuous curves are plotted for A = 0.5, 
 p = 0.3 and ω =p /32. The continuous lines represent the 
curves found using (6). The dots are found by repeatedly 

iterating the process using (3). KD represents the thickness 
of the limit set. 

 
3.3. A triangle wave input. 
 

Consider a triangular wave input which is represented 
by the following Fourier series [5]: 
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4. The Thickness of the Limit Set. 
 

  In [2], the thickness of the  invariant belt is constant:  
U(θ) – L(θ) = 2. For the mapping in (3), the thickness of 
the two-curve limit set can be determined using the 
formulae for CU(θ) and CL(θ) in the previous section. 

Since 
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This is evident in Fig. 3. 
 

 
Figure 4 The continuous curves are plotted for kf=1/4,    

afn= 0.202/n2, p = 0.3 and ω =p /32. . The continuous lines 
represent the curves found using (6). The dots are found 

by repeatedly iterating the process using (3). 
 
 5. Conclusions   

 
 In this paper, we considered the nonlinear dynamics of 

a map modeling discrete-and continuous-time first-order 
sigma-delta modulators with sampled periodic input. In 
particular, an explicit formula for the limiting curves and 
the thickness of the limit set was determined.   
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