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Abstract—The behaviour of the first-order Sigma-Delta In the ideal continuous-time sigma-delta modulator, i.e.
(=A) modulator with integrator leakage, a common circuit the system of Fig. 1(b) with a = 0, the quantizer samples
imperfection is investigated using methods of nonlinear the signa u(t) with period 7. This system is described by
dynamics. Both continuous and discrete time modulators  the equation:
are considered. The results found provide information du(f)
about the size of the internal variables in steady state, and =x()-sgn(u(nT)) fornT <t<m+I)T

also about the specific behaviour of those variables. dt . . .
Integrating between n7T and (n+1)7 and scaling by T gives
1. Introduction theequation 3
Upeg :un +xn+l _$n(un) (2)
Sigma-delta (£A) modulators are widely used for Where
analogue-to-digital and digital-to-analogue conversion in (n+1)T u(nT)
both discrete-time and continuous-time implementations Xpr) == I x(dt and u, =
[1]. A ZA modulator is an example of a nonlinear system, r aT

the nonlinearity being introduced by the presence of the Eq. (2) is of the form (1), and so our analysis of the
quantiser. In [2] we applied results of our work on driven  dynamics of (1) will apply to both the discrete- and
interval shifts to explain the steady-state dynamics of the  continuous-time modul ators.

first-order ideal discrete-time ZA modulator whose input  The non-ideal continuous-time system can also be
is a sampled periodic signal. In [3] the A modulator with  modelled by an equation of this form, proceeding as
integrator leakage, a common circuit imperfection, was before by integrating over a time-step and changing
explored. In particular, it was found that under certain variables, withp = ¢,

conditions the trajectories tend in the limit to lie on two Discretetimeintegrator
contiNUOUS Curves.

In this paper, an explicit formula for these curves with  x, Uy J’
any periodic input is determined. We will begin by N N Delay
reviewing some of our previous results. In section 3, the - +
new algorithm is presented and then applied to the case of

sinusoidal input and a triangular wave input. Finaly, the
effect of the integrator leakage on the thickness of the

limit set [2] is examined. (€Y
Non-ideal Continuous-
2. The Sigma-Delta M odulator fime  integretor
X(t) oo, J
2.1. XA Modulators * sta

Fig. 1 shows the basic first-order ~A modulator in both
(a) discrete- and (b) continuous-time implementations.

Idea discrete-time and continuous-time modulators are (b)
obtained by setting p = 1and « = O respectively. Figure 1 (a) Discrete-time first-order A modulator.
The system in Fig.1 (&) is modelled by the piecewise- (b) Continuous-time first-order =A modulator.
linear equation

Ups1 = Py + X,41 = S9N(u,,) D Eg. (1) can be converted to autonomous form, when x,, is
where sgn(u,,) = 1 when u,, = 0 and =1 when u,, < 0. the sampled version of a periodic signal / of frequency w

and this gives the 2D mapping:
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2.2 Nonlinear Dynamics of Ideal (ZA) Modulators.

The limit behaviour of the mapping in (3) with p=1
was studied in [2]. In this case, it was found that:

If <1 then there exists a bdt

1
2m

fo(e)de
0

B ={(6,u)|L(8) <u<U(H)} of constant thickness

U( — L(6 = 2 that absorbs all trajectories of (3) and is
invariant. 1f | /(&) | < 1for al 4 the belt is bounded by the
curves

Ci =f@)+1land C; = f(0)-1 4
Otherwise the boundaries consist of a finite number
of the critical curves[4] given by
c, Cr,

5
Cr=F(C,,) ad C, =F(C,,) forn=2. ©

In [3], the effect of including integrator leakage into the
map in (3), i.e. p < 1 case, on the dynamics was
investigated. The dynamics were found to be qualitatively
different from those of the ideal case. In this paper, the
limit behaviour of this mapping for p < 1 is investigated
further.

3. Nonlinear Dynamics of Non-ldeal (ZA) Modulator.

Firstly, it was found that the belt
By ={(8,u)| /(6)-1<u < f()+1 bounded by C; and

C; from (4) isinvariant with respect to the mapping (3)
under the following condition:
|A&) |<2p—-1foral g

However, the belt B, is no longer mapped onto itself by F
when p < 1. For values of @ such that | #) | < 1, its
section B4 (6) =[£(8) -1, f(8)+1) maps to two intervels
of combined length 2p separated by a gap of length 2 —
2p. For valuesof @suchthat 1 < |f(¥) | < 2/p — 1, By(O)
does not contain 0 and thus maps to a single interval of
length 2p. It is easy to see that this pattern continues, and
after k iterations the interval By(8) maps to m interval
components within B;(@+ k), for some 1 < m < k, of
combined length 2p* (on every step, if an iterate of B,(6)
contains 0, then its image gets one extra component).
Sincep < 1, itis clear that this combined length tendsto O
as the number of iterations tends to infinity, and so the
limit set (which isrigorously defined as the intersection of
the closures of consecutive iterates of the belt) where
trajectories reside in steady state has measure zero within
the belt B;. It isalso clear that the boundary points of the
interval components at any stage of the iteration process

lie on the critical curves C,; and C, definedin (5).
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3.1 TheLimiting Curves.

The main result in [3] which is of interest in this paper
is that for the case of | pf(0)+ f(@+w)|<1-p fordl G

the iteration of B, produces in the limit two continuous
curves. A trgjectory of (3) is shown in steady-state in Fig.
2(b). Note how the trajectory lies on the curves from Fig.
2(b). The dynamics are quite straightforward: with each
iteration the trajectory moves to the right by a distance «
bouncing between the curves. In this section, an explicit
formulafor these limit curvesis determined.
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Figure 2 (a) The belt B, bounded by Acos@+ 1 (b) The
limit obtained as the number of iterations of B, tendsto
infinity. 4=0.5,p =0.332 and w=r /32.A trgectory of
(3) is plotted jumping between the limit curves.

3.1.1 The equations of the limit curves

Consider any periodic input f(H)Which can be expressed
in terms of its Fourier series as follows:

10)=k, +>a, cosnd)+3 b, sin(n6).
n=1 n=1



Now the continuous curves on which the trgjectory lies ¢ (6 +2w) = p%k, + pky+k,—p+1+
can be described as: T

Cy(0)=ky + i ay cosn@)+ ibyn sin(n6) ;(p “ay, + pay, coslne)+ phy, sinlnew)+a, cosl2nw)+
B - b, sin(2nw))cos(nd) +

and C,(6)=k, + ) a,, cosln)+ Y b, sin(n6).
=1 =1

We will proceed by analysing the case of C, (9) .
Consider the upper limit curve:

Ifc.@)z=k,+ a, codnd)+ > b, sinlng Equation (6) and (8) must be equal. Firstly, the constant
V)=t Z:‘I o o) Z:‘{U” (né) term k,, can be determined easily.

Z(prU —pa; sin(na)) +pby, cos(na)) —ay Sin(2na))
n=1

+by cos(2n a))) S n(n 6’)
()

then ky = pPky + pk, +k, = p+1
Cul+20)=ky Z;U cos(n9+2nw)+;bl]n sn(n6+216)  Hene, k, = PN ;ljfp e

L{sing the followi ng trigonpmetric identities o _ pky+kp+p-1

sin(6+ ) = cosfsinw +sinfcose Similarly, &, T R

cos(9+ a)) = cosfcosw-sindsinw P

Then For each n, it can be seen that

Cy(0+20)= {cos(z;m))— »?, sin(an)}{aun} _
ky + Y (ay, cos(2nw)+ by, sin(2nw)) cos(n6) (6) -sn2w,  cos{2nw)- p?
n=1 {paﬁ? cos(n 0.))+ pby, s n(n a)) tag COS(Zn 0.)) +b, Sin(Zna)) }

+ z (by,, cos{2nw)-a,, sin(2nw))sin(n6) - pag, sinnw) - pby, coslnw)-ay, sin(2nw)+b,, cos(2nw)
n=1

b U}'[

From (3), -2 g
Cy(6+2a)= pC, (6+a)+ f(6+2a)+1 Letting M, = cos(2nw) - p?, sin(2nw) d
-sin(2nw), cos(2nw) - p?
which in turn gives C, =
Cule+ Za)) = .pZCU )+ pf(o+aw)+ f(9.+ 20)- p+1 pay, cos(nw)+ pb; s n(nw) tag COS(nZa)) +b, Sin(nZw)
Now sgbsntutl ng for f (6?) and C, (9) givesthe ~pa, s n(nw) -p b, co snew) - a; s n(n2w)+ b, co s{n20)
following: " " " "
C, (6+2w)= p{k[} +3 ay, cos(n6)+ by, sin(n 9)J + Provided that det(M,)# Othen
=1 =1
- - {GU” } =m,7c, 6)
p(kf +Y a; cos(nf+nw)+ D b, sin(nf+ nw)] +hy+ b,
n=1 n=1
o o Similarly, for FL"} =M,”C, .
Zafn COS(n9+2na))+be” sin(n@+2nw)- p +1 b,
n=1 n=1

3.2. A sinusoidal input.
Again using the trigonometric identities given above,
Consider the case of f(H) = Acosé . Thisisthe

simplest case where k, =0, a, =4, a, =0for
n>1b; =0foraln

_, 1 _| cosl2w)-p?,  sin(2e)
Here k, =k, “1vp My = {_Sm(m)),p cos(Za))—Pz}
_[ pAcos(w)+ 4cos2w)
and C, = [l_)pAsm(w)— Asin(ZCO)}
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Then by (8)

a a
Ul} =M,"'c, and I:bLl}M” =0 and C, =0for n>1

bUl I

Figure 3 The continuous curves are plotted for 4 = 0.5,
p = 0.3 and w=x/32. The continuous lines represent the
curves found using (6). The dots are found by repeatedly
iterating the process using (3). Kp represents the thickness
of the limit set.

3.3. Atrianglewaveinput.

Consider atriangular wave input which is represented
by the following Fourier series[5]:

flo)= 2 {cos(9)+3i2cos(3€)..1

Ty

0

-8
722T0n2
evenn; b, =0 foral n.

Now kf: L

—, ag, foroddnand a4 =0 for
Ty :

_ Phytk—ptl _pkytk tp-l
1—p2 1- p2
_[cos(2nw) - p?, sin(2nw)
) l:— sin(2n w), cos(2n a)) -p
{ pa;, coslnw)+a, cos2nw)

-pa; sin(nw) —ay sin(2na))

U

} for odd n
2

} for odd 7.

M, =0and C, =0 for evenn.
a a
Henceli U”} =M,™C,and { b

Un

} =M,c, for odd n.

L}’l
4. The Thickness of the Limit Set.

In [2], the thickness of the invariant belt is constant:
U(6 - L(6) = 2. For the mapping in (3), the thickness of
the two-curve limit set can be determined using the
formulae for Cy(@ and C,(6 in the previous section.
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. ay, ar L
Since = b” for al n, it is easy to see

Un Un
Ky =Cy(6)-C,(6) =—2— fordl @
1+p

Thisisevident in Fig. 3.

Figure 4 The continuous curves are plotted for k=1/4,
az=0.202/n’, p = 0.3 and w=r /32. . The continuous lines
represent the curves found using (6). The dots are found
by repeatedly iterating the process using (3).

5. Conclusions

In this paper, we considered the nonlinear dynamics of
a map modeling discrete-and continuous-time first-order
sigma-delta modulators with sampled periodic input. In
particular, an explicit formula for the limiting curves and
the thickness of the limit set was determined.
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