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Abstract—Position-and-scale-free representations of
shapes are acquired by neurons in the inferior temporal
(IT) cortex. So each neuron receives information from the
whole visual field. Familiar shapes are extremely limited
from all the possible shapes on the whole visual field. So
they must be clustered in the shape space to have mixed
structure of continuity and discreteness. We demonstrate
that multiple representation can be acquired in a spike-
based model for topological maps based on the spike-
timing-dependent synaptic plasticity (STDP), subjected to
a set of inputs on two rings, which is a simple example of
mixed structure. In this representation, the position on each
ring is represented by a center of active neurons and the dif-
ference of rings is represented by a detail pattern of active
neurons. Neurons in the same region exhibit high activi-
ties for an input on the other ring. The result is consistent
with the fact observed in IT cortex that neighboring neu-
rons exhibit different preferences while the region of active
neurons is continuously shifted for continuous changes of
object.

1. Introduction

It is known that spike frequency of a neuron in the pri-
mary visual cortex (V1) depends on the orientation of edge
in a specific small region of visual field. In other words, a
V1 neuron has its preferred position and orientation. The
feature space composed of position and orientation is cov-
ered by population of V1 neurons. These neurons are ar-
ranged on a cortex so that neurons preferring more close
features might be more close on a cortex. Such an arrange-
ment of neurons is called as a “topological map”. Topo-
logical maps are generally observed in sensory neural sys-
tems as well as V1. These maps are considered to be self-
organized by changing of connection strength, and various
models have been proposed [1, 2, 3].

On a higher stage of extracting visual features, a
position-free representation is acquired. For example, in
the inferior temporal (IT) cortex, a neuron raises its spike
frequency selectively to a certain specific shape and inde-
pendently from the visual position and size. It shows that
an IT neuron receives information from the whole visual
field. Sources of inputs to each neuron have quite high di-
mension at the retina. The number of IT neurons is too
few to cover the whole possible shapes. So IT neurons are
considered to cover only shapes that the animal frequently
sees, which are extremely limited from the whole possi-

ble shapes. It is unlikely that all of the familiar shapes are
continuously linked. On the other hand, there is a set of
shapes that are linked continuously, for example a set of
shapes obtained by rotation of a familiar object. Therefore,
shapes of familiar objects are considered to be on separate
clusters in the space of shapes. We can say that IT neurons
receive inputs that have mixture of continuous and discrete
structure.

In the case of such clustered inputs, the topological map
models acquire patchwork-like structures dividing a cor-
tex discretely. Continuous components in each cluster are
represented by position in each patch. In fact, continu-
ous changes of selectivity are observed in neighboring IT
neurons[4, 5], and patch-like neurons selective to a shape
are observed in IT cortices [5]. These facts are consistent
with the models for topological maps. However, an IT neu-
ron generally exhibits high activity even for entirely differ-
ent shapes from its preferred shape. The activity pattern for
a given set of shapes differs among neighboring neurons[6].
This fact is contradictory to the topological map models. It
is found that IT cortex acquires a multiple representation
different from simple topological maps.

In order to overcome this conflict, Wada et al. introduced
random recurrent connections between local neurons[7],
while classical models for topological maps have symmet-
ric and homogeneous connection patterns. They applied
it to a set of inputs distributed on two parallel rings in 3-
dimensional space. As a result, a multiple representation is
acquired where the position on each ring is represented by
the center position of active neurons localized in a region
and the difference of rings is represented by the detail activ-
ity pattern of neurons in the region. In this representation,
neighboring neurons exhibit different activity patterns for
the set of inputs, but they are likely to prefer similar inputs.
It is consistent with the physiological results [4, 5, 6].

In these models for topological maps [1, 2, 3, 7], each
neuron is assumed as an abstract unit that outputs value of
spike frequency. The rule for updating connections also de-
pends on spike frequency. On the other hand, a biological
neuron outputs spikes. It is necessary to assume a unit as
an ensemble of identical and independent neurons in order
to reduce the realistic model to a frequency-based model.
Every unit should be a neuronal ensemble. For example,
in the simulation of Wada et al.[7], we should assume that
many neuronal ensembles on a cortex receive inputs com-
monly from three neuronal ensembles. There is not neces-
sarily such a discrete grouping of neurons in a cortex. The
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Figure 1: Schematic representation of the structure of input
pattern set.

present study attempts to examine reproducibility for mul-
tiple topological maps on a spike-based model that is free
from the restriction of discrete groupings.

A spike-based model for topological maps has been pro-
posed by Song and Abbott[8], based on the physiological
phenomena known as the spike-timing-dependent synaptic
plasticity(STDP)[9]. In their simulation, a topological map
for inputs on one ring in high dimensional input space is
organized on one-dimensional cortex. The present study
examines what maps are organized in the equivalent model
for a set of inputs on two rings like Wada et al.[7].

2. Model

In the present study, we uses a model equivalent to the
model in [8]. There are 1,000 neurons on the input layer
and 200 neurons arranged circularly on the output layer.
The output layer corresponds to a cortex. Each neuron on
the output layer receives excitatory connections from ran-
domly selected input neurons at rate 0.2, excitatory con-
nections from 80 neighboring neurons on the output layer,
and inhibitory connections from all of the output neurons.
In addition, each neuron receives random inhibitory inputs
(Poisson process) of size winh. at rate 400Hz.

Each input neuron emits random spikes (Poisson pro-
cess) at the current rate depending on its state: “up-state”
with high spike rate λup or “down-state” with low spike rate
λdown. Up-down pattern is given as a input. Let up-state and
down-state correspond to the values 1 and 0 respectively,
and an input pattern is described by 1,000-dimensional bi-
nary vector ξ. We prepare two sets of n random binary pat-
terns {ξµ|µ = 1, 2, · · · , n} and {ηµ|µ = 1, 2, · · · , n} at con-
stant bit rate,

∑
j ξ
µ
j =
∑

j η
µ
j = R, which are arranged on

respective rings at constant intervals measured by the over-

lap or Hamming distance,

ξ1 · ξ2 = · · · = ξµ · ξµ+1 = · · · = ξn · ξ1 = Rm,

η1 · η2 = · · · = ηµ · ηµ+1 = · · · = ηn · η1 = Rm,

ξ1 · η1 = · · · = ξµ · ηµ = · · · = ξn · ηn = RM, (1)

where m and M represent the intra-ring and inter-ring over-
laps. This set of inputs ξµ, ηµ is topologically equivalent to
the parallel two rings introduced by Wada et al.[7]. When
the intra-ring overlap m is sufficiently larger than the inter-
ring overlap M, the position on a ring described by µ is
considered to be a relatively continuous feature to the dis-
creteness of the difference of rings.

Each output neuron obeys the leaky integrate-and-fire
model. We use the current-based synaptic inputs instead
of conductance-based inputs. So we introduce a constant
synaptic delay of 5msec to include effectively the open-
and-closing time scale of conductance. Let s j(t) denote se-
ries of delta functions shifted 5msec from the spike timings
of the j-th neuron,

s j(t) =
∑

k

δ(t − t j
k − 5), (2)

where {· · · , t j
k, t

j
k+1, · · · } are spike timings of the j-th neu-

ron. The index j is assigned serially through every input
and output neuron. The membrane potential of the i-th out-
put neuron obeys the following equation,

dvi

dt
= −vi

τ
+
∑

j∈exc.

wi js j(t) − winh

∑

j∈inh.

s j(t)

vi > vth ⇒ spike & vi = 0, (3)

where the summation
∑

j∈exc. is for all the excitatory con-
nections received from the input and output neurons, and
the summation

∑
j∈inh. is for all the inhibitory inputs re-

ceived from all the other output neurons and the source of
random inhibitory inputs. All the excitatory connections
wi j is updated according to the STDP rule[8], while the
recurrent connections on the output layer are fixed in the
frequency-based models [1, 2, 3, 7]. Let the time scales
of timing window of STDP rule be equal to the membrane
time scale τ, and the connections wi j obey the following
equations,

dai

dt
= −ai

τ
+ si(t), (4)

dwi j

dt
= A+a jΘ[1 − wi j]si(t) − A−aiΘ[wi j]s j(t), (5)

where the function Θ[ · ] denotes the unit step function
(Heaviside function), introduced in order to limit the
strength of connection in the region w ∈ [0, 1].

The model parameters are fixed so that this model should
be equivalent to that of Song and Abbott[8], τ = 20ms,
winh = 0.2, vth = 20, A+ = 0.005, A− = 1.05A+,
λup = 36.7Hz, λdown = 3.33Hz, and R = 200. The num-
ber of input patterns and the intra-ring overlap are also
fixed throughout the following simulations, n = 1, 000,
m = 0.995.
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Figure 2: A-C: Spike frequency patterns αµ and βµ of output neurons for input patterns ξµ (Ring1) and ηµ (Ring2)
respectively after sufficient self-organization (10,000sec) for the set of input patterns {ξµ, ηµ}. D: The mean direction
cosines of the activity pattern vectors αµ and βµ (solid line marked by squares) and of the smoothed activity pattern
vectors α̃µ and β̃

µ
filtered by the smoothing window with 40 neighbors (dashed line marked by circles).

3. Simulation results

A set of input patterns {ξµ, ηµ} are prepared for a certain
inter-ring overlap M according to (1). Current input pattern
switches randomly among the prepared set of input patterns
at a mean interval of 40msec (Poisson process). Obeying
the equations (2–5), the excitatory connections {wi j} are up-
dated depending on the spike timings. The initial values of
feed-forward connections from the input layer to the out-
put layer are uniformly distributed in [0,1] and the initial
values of recurrent connections on the output layer are set
to zero. After a long enough time about 10,000sec, the dis-
tribution of {wi j} approaches a steady distribution. After
approaching the steady state, we stop updating the connec-
tions (5) and examine activity pattern of the output neurons
for each input pattern. The current input pattern is fixed to

a certain pattern µ and spike frequencies of output neurons
are estimated from spike series for a long enough simula-
tion. In the same way, the frequency patterns or the activity
patterns for all the input patterns are obtained,

αµ = (αµ1, α
µ
2, · · · , αµ200), βµ = (βµ1, β

µ
2, · · · , βµ200),

where αµ and βµ correspond to the activity patterns for the
input patterns on the two rings, ξµ and ηµ, respectively.

Figure 2 shows the frequency patterns in several cases
of inter-ring overlap values M = 1, 0.5, 0.1 as grey scale
plots. The case that M = 1 corresponds to the case that a
ring completely coincides with the other, namely the case
of one ring which is equivalent to the simulation of Song
and Abbott[8]. In the case that M = 1 (Figure 2A), local-
ized neurons exhibit high activities for each input pattern
and the center of active neurons is shifted as the position of
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the input pattern on the ring is shifted. It is confirmed that
a topological map representing the position on the ring can
be self-organized in the present spike-based model as well
as the demonstration of Song and Abbott[8].

In the case of the more separate rings, M = 0.5 (Figure
2B), we can see the same type of correspondence between
the input position on a ring and the center of active neurons.
In addition, neurons in the same region exhibit high activ-
ity even for the input pattern on the corresponding position
of the other ring. So the center of active neurons represents
the input position on the rings regardless of the difference
of rings. Is there any difference in the activity patterns be-
tween the two rings?

Figure 2D shows the inter-ring correlation of activ-
ity patterns, C (solid line marked with squares), and of
smoothed activity patterns, C̃ (dashed line marked with cir-
cles), which are defined to be the mean direction cosines
between the activity vectors αµ and βµ, and the smoothed
activity vectors α̃µ and β̃

µ
,

C =
1
n

n∑

µ=1

αµ · βµ
|αµ||βµ| , C̃ =

1
n

n∑

µ=1

α̃µ · β̃µ
|α̃µ||β̃µ| ,

α̃
µ
i =

20∑

k=−20

α
µ
i+k, β̃

µ
i =

20∑

k=−20

β
µ
i+k,

where the index i for α and β satisfies periodic boundary
conditions, for example αµ−k means αµ200−k. We can see that
the inter-ring correlation of activity patterns decreases as
the input rings separate more, while that of smoothed ac-
tivity patterns stays near 1. So in the middle range of inter-
ring overlap, M = 0.3 ∼ 0.5, the position on each ring
is represented by the center of active neurons on the output
layer, and the difference of rings is represented by the detail
activity patterns of the localized active neurons.

In the case of the still more separate rings, M = 0.1
(Figure 2C), topological maps for the position on each ring
is still observed, but the correspondence between the two
rings is broken. The inter-ring correlation of the smoothed
activity patterns also vanishes (dashed line marked by cir-
cle in Figure2D).

4. Discussion

We found that the present spike-based model acquires
the dual representation where the position on each ring is
represented by the center of active neurons on the output
layer, and the difference of rings is represented by the de-
tail activity patterns of the localized active neurons. In ad-
dition, in the middle range of inter-ring distance, positions
on the two rings represented by a center of active neurons
correspond. This dual representation is consistent with the
results in Wada et al.[7]. The duality commonly originates
in random recurrent connections on the output layer, which
are also self-organized by the STDP rule in the present
model, while they are prepared in advance in the model
of Wada et al.[7].

The present result implies the possibility that multiple
topological maps for different features are acquired in a
sheet of neural field and the different maps are distin-
guished with the detail pattern of active neurons. The
present study demonstrated that only two topological maps
corresponding to two rings are acquired. It is interesting
problem how many maps are acquired. The capacity will
depend on the number of neurons.
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