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Abstract—This paper shows a basic framework for
applying hybrid system theory to power system sta-
bility analysis. Hybrid dynamical systems and control
are nowadays developed in the intersection of com-
puter science and control engineering. In this pa-
per we discuss an application of hybrid system theory
to stability analysis of power systems, and propose a
novel approach to the stability estimation based on
the revolution of reachable sets. This paper applies
the proposed approach to transient stability analysis
of a simple electric power system, thereby showing the
effecitiveness of the approach.

1. Introduction

Nowadays electric power systems become compli-
cated in terms of their size, configuration, dynamics,
operation, and control: see e.g., [1, 2, 3, 4]. In a techni-
cal trend, various power apparatuses including HVDC
systems [5] and FACTS [6] are installed into conven-
tional ac power systems. Their apparatuses are based
on switching operation of power conversion devices,
and they are expected to contribute the operation of
power systems. On the other hand, as a non-technical
issue, regulatory reforms of power markets require a
substantial modification of conventional power sys-
tems. These technical and non-technical trends ob-
viously cause the dynamics of power systems to be
complicated and therefore make it much difficult to
analyze and control the dynamics. A comprehensive
approach to the analysis and control has been thus
strongly required [2].

Hybrid dynamical systems and their control are at-
tracting a lot of interests in the fields of computer sci-
ence and control engineering: see e.g., [7, 8, 9]. Hybrid
automata are of central concern with hybrid systems
and control. The mathematical formulation is applica-
ble to the analysis of various complicated systems that
involve the interaction of continuous and discrete dy-
namics. Reachability analysis [7] of hybrid automata is
here of paramount importance for safety specifications
of engineering systems: for examples, steam boiler and
flight management systems [7, 9].

The objective of this paper is to apply hybrid sys-
tem theory to power system stability analysis. Power
system stability is one of the fundamental concerns in
system planning, operation, and control [10, 11]. Re-
cently several researchers have worked on the intersec-
tion of power system analysis and hybrid system the-
ory: Hiskens and Pai [12] propose a hybrid modeling of
power systems including transformer tap change and

relay operation; DeMarco [13] proposes a phase transi-
tion model for cascading failure via hybrid dynamical
systems; and Fourlas et. al [14] investigate dynamic
response of power transmission system via a hybrid
automaton model. The present paper discusses a ba-
sic framework for stability analysis of complex power
systems based on hybrid system theory. We here pro-
pose a novel approach to the stability estimation based
on the revolution of reachable sets. This paper also
applies the proposed approach to transient stability
analysis of single machine-infinite bus (SMIB) system.
Some of the results in this paper are preliminary pre-
sented in [15, 16].

2. Basic framework

This section discusses a basic framework for apply-
ing hybrid system theory to power system stability
analysis based on hybrid system theory [7, 17, 9].

2.1. Hybrid automaton as power system model

A hybrid automaton H is defined to be the tuple
H = (Q × X, U × D,Σu × Σd, f, E, Inv, I,Ω) with

• Q × X is the state space, with Q ,
{q1, q1, · · · , qm} a finite set of discrete states and
X a n-dimensional manifold; a state of the system
is a pair (qi, x) ∈ Q × X;

• U × D ⊂ Ru × Rd is the product of the set of
continuous control inputs and the set of contin-
uous disturbances; the space of acceptable con-
trol and disturbance trajectories are denoted by
U , {u(·) ∈ PC0 | u(τ) ∈ U ∀τ ∈ R} and
D , {d(·) ∈ PC0 | d(τ) ∈ D ∀τ ∈ R}. PC0 de-
notes the space of piecewise continuous functions
over R;

• Σu × Σd is the product of the finite set of dis-
crete control actions and the finite set of discrete
disturbance actions;

• f : Q×X×U ×D → TX is the vector field which
associates a control system f(q, x, u, d) with each
discrete state q ∈ Q;

• E : Q × X × Σu × Σd → 2Q×X is the discrete
transition function;

• Inv ⊆ Q×X is the invariant associated with each
discrete state, meaning that the system evolves
according to ẋ = f(q, x, u, d) only if (q, x) ∈ Inv;

• I ⊆ Q × X is the set of initial states;
• Ω is the trajectory acceptance condition (here

Ω = 2F for F ⊆ Q × X. 2 denotes a map,
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called property, from the set of all executions of
H to {True,False}[7].).

The hybrid automaton H is relevant for modeling
an electric power system that includes relay opera-
tions, switching operation of power conversion appa-
ratuses, and possible disturbances caused by deregu-
lation of power markets. In the continuous part in H,
f describes the dynamics of rotor angles and voltages,
for which we usually use swing equations [10, 11] and
differential-algebraic equations [18, 10]; u(·) ∈ U is re-
garded as the control input such as dc links, SVCs,
and so on; and d(·) ∈ D is as a possible and irregular
disturbance caused by deregulation of power markets.
On the other hand, in the discrete part in H, E repre-
sents the discrete transition of system states (modes);
(σu[·], σd[·]) ∈ Σu ×Σd also implies the controlled and
uncontrolled line switching by relay operation, acci-
dental faults, and so on. The hybrid automaton H is
thus applicable to complex power systems which in-
volve the interaction of continuous dynamics and dis-
crete events. Note that the above description is rele-
vant to any aspect of power system analysis: transient
stability, voltage stability, multi-swing instability, and
so on. In the next section we will deal with transient
stability analysis of a simple power system.

2.2. Reachable sets for stability analysis

Here we introduce a new approach for stability es-
timation via hybrid system theory. Let us define an
unsafe set G ⊂ Q × X for the hybrid automaton H.
The unsafe set is interpreted as a subset in which the
power system cannot be safely operated: large rotor
swing, stepping-out, low voltage amplitude, and so on.
A reachable set Rt(G) (t < 0) for the hybrid automa-
ton H is roughly defined to be a subset of Q × X
in which any system state reaches to the boundary
∂G of G until at least |t| time despite of the control
(u(·), σu[·]): precise discussion of hybrid reachable sets
is in [17]. Fig. 1 shows the concept of reachable sets
for continuous systems. An usable part in the figure,
for continuous systems, is a part of the boundary ∂G
for which there exists a disturbance d ∈ D such that
for all inputs u ∈ U the vector field points into G. The
usable part is utilized to calculate the reachable set in
Section 3. The concept of the reachable sets is much
important for validating the stability of power systems,
because, if a system state exists in Rt(G), then we can
evaluate that the system will reach to an unaccept-
able operation for any control input. In particular the
reachable sets have a great potential to contribute the
stability analysis of hybrid power systems caused by
line switching, etc. Note that an interesting method
for calculating time-growth of reachable sets has been
proposed based on a Hamilton-Jacobi equation and a
level set method in [7, 17, 19, 9].

3. Transient stability estimation via reachable
sets

This section analyzes transient stability of a single
machine-infinite bus (SMIB) system, shown in Fig. 2,
via reachable sets. The SMIB system consists of a
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Figure 1 Concept of reachable sets for continuous
systems
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Figure 2 Single machine-infinite bus (SMIB) system

synchronous machine, an infinite bus, and two parallel
transmission lines.

3.1. Mathematical model

The electro-mechanical dynamics of synchronous
machine is described by the following swing equation
system:

{
δ̇ = ω,
ω̇ = PM − b sin δ − kω,

(1)

where δ is the rotor position with respect to syn-
chronous reference axis, and ω the rotor speed devia-
tion relative to system angular frequency. PM denotes
the mechanical input power to generator, b the crit-
ical transmission power of SMIB system, and k the
damping coefficient in generator. The derivation of
the system (1) is given in [11]. This section uses the
following parameters setting [20]:

b = 0.7, k = 0.05, PM = 0.2. (2)

3.2. Numerical simulation

3.2.1. Continuous case

First of all we examine reachable sets for continuous
swing equation system (1). Let us define the unsafe set
G with the boundary ∂G as follows:

{
G , {(δ, ω) ∈ S1 × R1 | ω2

c − ω2 ≤ 0},
∂G , {(δ, ω) ∈ S1 × R1 | ω2

c − ω2 = 0}, (3)

where ωc = π. Any state in G physically implies an
unacceptable operation of the SMIB system because
of the large value of ω. The usable part UP of ∂G is
then derived as follows:

UP = {(δ, ω) ∈ ∂G |
∓2π(PM − b sin δ ∓ πk) < 0} . (4)
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Figure 3 Growth of reachable set in continuous swing
equation system
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Figure 4 Reachable set and stability region in contin-
uous swing equation system. The red dot-
ted closed loop is an analytical criterion for
stability based on closest u.e.p. method.

The derivation of UP is based on [7, 17, 9]. Fig. 3
shows the growth of reachable set of G for continuous
swing equation system (1). TR in the figure denotes
the time until at least which any state in the reach-
able set reaches to ∂G. As TR increases, the reachable
set expands into the phase space; actually the comple-
ment of the reachable set approximates the stability
region of an asymptotically stable equilibrium point
(sin−1(PM/b), 0) as time goes to infinity. This is con-
firmed in Fig. 4; the red closed loop is the sufficient
condition for transient stability based on closest u.e.p.
method [10]. The complement of the obtained reach-
able set in Fig. 3 hence corresponds to a necessary
condition for the transient stability of the SMIB sys-
tem.

3.2.2. Hybrid case

This section discusses hybrid reachable sets related
to re-closing operation of transmission lines. Fig. 5
shows a switching sequence for the SMIB system. The
three modes are as follows: (i) fault-on is the system
state during a sustained fault on one line; (ii) 1 line
operation is the state after clearing the fault line by
relay operation; and (iii) 2 line operation is the state
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Figure 5 Switching sequence governing SMIB system
with clearing and re-closing operations

after re-closing the line. tc denotes the fault-clearing
time, and tr the re-closing time. In the figure, we can
regard the fault clearing and circuit re-closing as the
discrete transitions, which drive depends on time vari-
able only, in the hybrid automaton. In the swing equa-
tion system (1), the fault-on, 1 line operation, and 2 line
operation modes coincide with the parameter settings:
b = 0.0, 0.35, 0.7, respectively.

We are in a position to investigate hybrid reachable
sets of the unsafe set G at ωc = 2.0 for each mode.
The transmission line is here re-closed after the re-
closing period Trc , tr − tc. The derived reachable set
is then decomposed into the two subsets Rbefore and
Rafter; Rbefore is the subset of S1 ×R1 from which any
state reaches to ∂G before the re-closing; and Rafter

is the one from which any state reaches to ∂G after
the re-closing. Fig. 6 shows the two reachable subsets
Rbefore and Rafter under the condition Trc = 0.5 s. The
product of the two subsets corresponds to the hybrid
reachable set of G.
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Figure 6 Reachable set in swing equation system un-
der re-closing time Trc = 0.5 s

Figure 7 describes how the reachable set changes as
the re-closing period Trc increases. The red closed loop
stands for the sufficient condition for transient stabil-
ity of 1 line operation. In Fig. 7 we can observe that
some of the system states can survive by the slow re-
closing Tcr = 0.3 s rather than the fast one Tcr = 0.1 s:
see the neighborhoods of (−π/2,−0.5) in Figs. 7 (a)
and (b). This observation is not given by any classi-
cal method of transient analysis. Fig. 7 thus suggests
that the reachability analysis makes it possible for us
to estimate the transient stability taking the switching
operation into account.

4. Summary

This paper showed a basic framework for applying
hybrid system theory to power system stability anal-
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Figure 7 Hybrid reachable sets in swing equation sys-
tem. The red closed loop stands for the
sufficient condition based on closest u.e.p.
method.

ysis. The mathematical model via hybrid automata
is much relevant to the analysis and control of fu-
ture power networks involving power conversion ap-
paratuses, deregulation of power markets, and so on.
This paper also performed the transient stability esti-
mation based on the revolution of reachable sets. Our
future direction is to apply the present approach to
practical system analysis [21].
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