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Abstract—On the commonly found scale-free (SF)
structure in many complex systems, we propose a geo-
graphical configuration of SF networks without crossing
links. We show the comparative short links and small num-
ber of hops, and find new relations of the average distance
〈D〉 ∼ log Nβd and the number of hops 〈L〉 ∼ Nαl for the
network size N. These properties in the evolutional net-
works based on local rules are useful for efficient commu-
nication.

1. Introduction

Complex networks have been studied with great interest
inspired from physics to biology, computer science, and
other fields, since the surprisingly common topological
structure called scale-free (SF) have been found in many
real systems [2]. The degree distribution follows a power
law, P(k) ∼ k−γ, 2 < γ < 3; the heterogeneous network
consists of many nodes with small degree and a few hubs
with large degree, and has good properties for efficient
communication (short path length) and robust connec-
tivity [1]. Moreover, the restriction of links has been ob-
served, e.g. Internet at both router and AS levels [14], road
networks, and flight-connection in a major airline [6]. In-
deed, the distribution of link lengths was inversely propor-
tional to the lengths [14], excluding the Waxman’s expo-
nentially decay rule which is widely used in traffic simula-
tions. In this paper, we consider geographical SF network
models for a number of research fields including urban
planning, electric circuits, distributed robots, sensor net-
works, communication networks [7], and so on.

In the state-of-the-art, a few geographical SF network
models have been studied with theoretical analysis in the
evolutional mechanisms of power law behavior. They are
the modulated Barabási and Albert (BA) model [10][13],
SF networks embedded on lattices [3], and Apollonian
networks[5][15]. The 1st model is grown by introducing
a new node at each time whose position is random on the
Euclidean space, and the probability of connection is pro-
portional to kilα, where l is the Euclidean distance between
the tth (birth at time t) and the ith node with degree ki, and
α is a parameter. The case of α = 0 is the original BA

model [2]. The 2nd model is constructed on a lattice by
adding the connections between the node j with randomly
assigned degree k j according to a given power law distri-
bution P(k) and the neighbor nodes within the radius r(k j)
proportional to the degree k j. In the 1st and 2nd models,
crossing links cause a serious problem such as interfer-
ence of the wireless beam, while the 3rd model is planar
without crossing links; the space-filling packing is based on
triangulation by adding a new node at a random position.
Planar triangulation is a reasonable mathematical abstrac-
tion of ad hoc networks [7], in addition, a memoryless, no
defeat, and competitive online routing algorithm has been
developed [4] for such networks1. On the other hand, the
random Apollonian networks (RAN) have long-range links
which cause dissipation of the beam power or the con-
struction cost of links. There exists a trade-off. Thus, we
consider a new model to avoid long-range links preserving
the SF structure on a planar space.

2. Delaunay-like SF networks

The Delaunay triangulation, which is the dual of a
Voronoi diagram, has good properties and is useful in prac-
tical applications for geographical information processing
and computer graphics [12]. In the 2-dimensional case,
it is the optimal triangulation with respect to the maximin
angle criterion, the minimax circumscribed circle criterion
and some other criteria [8]. For example, the shortest path
length between any two nodes on a Delaunay graph is of
the same order as the direct Euclidean distance, since
the ratio of them is bounded with a constant [9]. One of the
fundamental techniques for equipping such properties is di-
agonal flipping. By using this technique to reduce long-
range links, we propose a modified model from RAN with
a power law degree distribution. The main idea is based on
a strategy of the connecting nodes in distances as short as
possible. The network is grown as follows.

1This sentence means that the algorithm can find a path (no defeat)
using only local information (memoryless) about the source, destination,
and the adjacent nodes to a current node in the routing, and that the ratio
of the routing path length and the shortest Euclidean distance is bounded
with a constant (competitive).
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0: Set an initial planar triangulation.

1: Select a triangle at random and add a new node at the
barycenter. Then, connect the new node to the three
nodes of its triangle. Moreover, by iteratively apply-
ing diagonal flips, connect it to the nearest node (or
more than one of the neighbor nodes) within a radius
defined by the distance between the new node and the
nearest node of its triangle.

2: The above process is repeated until reaching the re-
quired size N.

We have two versions with one nearest node and all neigh-
bors in the circle. Note that these nodes are limited to the
connected ones by applying iterative diagonal flips.

Fig. 1 shows the linking procedures by iterative diagonal
flips: in a quadrilateral (of the shaded triangles) the diago-
nal link is exchanged to the other link (red line) for maxi-
mizing the minimum angle. The dashed lines are new links
from the barycenter, and form new (five) triangles with the
contours in the left of Fig. 1 (the intersected black solid
links with dashed ones are removed). The difference for our
model based on the local procedures is that diagonal flips
in the original Delaunay triangulation are globally applied
for the (entire) triangles until there exists no-increasing the
minimum angle by the exchange of links.

1st diagonal flip 2nd diagonal flip

= +

Figure 1: Linking procedures in a Delaunay-like SF net.

3. Simulation Results

Let us consider three classes of networks, RA: ran-
dom Apollonian network, DT: Delaunay triangulation, and
RA+NN: our Delaunay-like SF network model by the com-
bination of random triangulation and diagonal flips to the
(’one’ or ’all’) nearest neighbor(s) in the circle. Fig. 2
shows the topological characteristic that the RA+NN (the
case of ’all’ is the same with the ’one’ property) has in-
termediate structure between those of RA and DT. Note
that heterogeneous structures with dense and sparse parts
are constructed. An explanation of the triangulation is the
subdivision of a service area according to the increasing of
population with preference of aggregation.

We discuss the details in numerical simulations. Each
class of network is investigated in the averaging of 100 re-
alizations at the size N = 10, 000 generated from the initial
configuration of a square graph at (±1,±1) adding with the

RA DT RA+NN(one)

Figure 2: The three classes of networks, RA: random Apol-
lonian network, DT: Delaunay triangulation, and RA+NN:
our model by the combination of random triangulation and
diagonal flips to the nearest neighbor.

center at (0, 0) and the four diagonal links. We have ob-
tained similar results for the other initial configuration of
triangle and hexagon.

model estimated function parameters
RA P(k) ∼ k−γRA γRA ≈ 3

DT P(k) ∼ exp
(

−
(ln k−µ)2

2σ2

)

µ = 1.7755, σ = 0.2383

RA+NN(one) P(k) ∼ k−γ exp(−ak) γ = 2.26, a = 0.0647
RA+NN(all) P(k) ∼ k−γ exp(−ak) γ = 1.7248, a = 0.0979

Table 1: Estimated functions for the degree distributions by
using the nonlinear MSE method.

Fig. 3 shows that the degree distributions in RA,
RA+NN(’one’ & ’all’), and DT follow a power law, power
law with exponential cutoff(see Appendix), and lognor-
mal on the estimated dashed-lines whose parameters are
summarized in Table 1. In other words, DT is not SF,
while the other two models are so. We remark that in
RA+NN(’one’ & ’all’) the degrees of hubs become smaller
than that in RA. It means lower load or congestion at
hubs. The inset shows the degree-degree correlations; RA
has a negative correlation, RA+NN(’one’ & ’all’) have
more weaker ones, while DT has a positive correlation.
In general, the negative and positive correlations, charac-
terized by connections between nodes with different (low
and high) degrees and between nodes (such as hubs) with
similar degrees, have been observed in technological or bi-
ological networks and in social networks [11], respectively.
Thus, DT has a different topological structure (no-hubs,
positive correlation) from others.

Next, we compare the communication costs. Fig. 4 (a)
shows the average Euclidean distance 〈D〉 on the shortest
paths between any nodes at the size N. The inset also shows
the average Euclidean distance 〈D′〉 on the paths of the
minimum hops at the size N. Note that the paths of the min-
imum hops may be different from the shortest paths. The
distances 〈D〉 in DT and RA+NNs except in RA are smaller
as the size N increases (dense network with many nodes),
while the distances 〈D′〉 are the opposite. It is the reason
for increasing the distances that the paths of the minimum
hops tend to take long-range links. In particular, our pro-
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Figure 3: Distributions of degree P(k) and degree-degree
correlation knn(k): Inset.

posed RA+NN(’one’) has the minimum distances of both
〈D〉 and 〈D′〉. From the estimated dashed lines (by using
the MSE method), we obtain the relations 〈D′〉 ∼ log Nβd

and 〈D′〉 ∼ log Nβ
′
d characterized as a small-world effect.

Fig. 4 (b) shows the average minimum number of hops
〈L〉 at the size N. The inset also shows the average num-
ber of hops 〈L′〉 on the shortest paths in the Euclidean dis-
tance at the size N. All of them are smaller as the size N
increases, RA+NNs have the intermediate values. The rea-
son for larger 〈L′〉 than 〈L〉 is that the shortest paths tend to
take short-range links in spite of increasing the number of
hops such as on a zigzag route. From the estimated dashed
lines, we obtain the relations 〈L〉 ∼ Nαl and 〈L′〉 ∼ Nα

′
l .

The estimated values of exponents are summarized in Ta-
ble 2.

model βd β′d αl α′l βl β′l
RA 0.003 -0.015 0.121 0.136 0.554 0.814
DT -0.013 0.155 0.333 0.455

RA+NN(one) -0.009 0.031 0.213 0.341 1.454 4.294
RA+NN(all) -0.022 0.137 0.216 0.346 1.492 4.452

Table 2: Estimated values of the exponents.

4. Conclusion

In contrast to abstract graphs, many real networks are
embedded in a metric space. On the other hand, the SF
structure has been commonly found in many complex sys-
tems of biological, technological, and social origins [2].
It is therefore natural to investigate the possibility of em-
bedding SF networks in space. The topological and ge-
ographical properties are very important for efficient
communication.

In this paper, we have mentioned recent studies of ge-
ographical SF network models, and proposed a modified
one to reduce long-range links. The Delaunay-like SF net-
work is generated by the iterative triangulation and the di-
agonal flipping based on local rules, and embedded on a
planar space without crossing links. Simulation results
have shown that our proposed model has comparative short
links and small number of hops. The statistical properties
are inherited from the conventional Delaunay graphs [8] [9]
and random Apollonian networks [5] [15], and suitable for
many real systems such as distributed robots, sensor net-
works, and communication networks [4] [7], etc.
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Appendix

We approximately derive the exponential decaying in the
degree distribution of our RAN+NN models. When some
links are removed from a node by multiple diagonal flips as
shown in Fig. 1 , the dynamical equation of the number of
nodes n(k + 1,N) with degree k + 1 at the size N is given

n(k + 1,N + 1) =
k

N∆
n(k,N) +

(

1 − k+1
N∆

)

n(k + 1,N)
−a k

N∆
n(k + 1,N),

where N∆ and a denotes the number of triangles and the av-
erage rate of the multiple diagonal flips, respectively. The
1st and 2nd terms in the r.h.s correspond to the preferential
attachment (by random selection of triangles), and the 3rd
term is the statistical effect of multiple diagonal flips. Note
that there is no other reason for decreasing the degree. We
neglect the other effects such as additional links to nodes
with low degrees, because we focus on the tail of degree
distribution.

By using P(k) = n(k,N)/N, we have

N∆ + N
N

P(k + 1) + k(P(k + 1) − P(k)) + akP(k + 1) = 0.

From the continuous approximation dp/dk ≈ P(k+1)−P(k)

and γ
def
= (N∆ + N)/N, it is rewritten as

k
dp
dk
= −(γ + ak)p.

Thus, we obtain the solution p(k) ∼ k−γ exp(−ak).
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